K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

15 tháng 2 2018

Đáp án B

26 tháng 8 2019

14 tháng 7 2018

27 tháng 7 2017

Chọn B.

Phương trình hoành độ giao điểm:  x + 2 2 x + 1 = mx + m - 1 

Để đường thẳng luôn cắt đồ thị hàm số tại hai điểm phân biệt thuộc hai nhánh của đồ thị thì phương trình (1) phải có hai nghiệm phân biệt  x 1 , x 2  thỏa mãn 

(1) có hai nghiệm phân biệt 

Theo định lý Vi – ét ta có 

19 tháng 1 2018

a) y = 4 x 3  + x, y′ = 12 x 2 + 1 > 0, ∀ x ∈ R

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Giả sử tiếp điểm cần tìm có tọa độ (x0; y0) thì f′(x0) = 12 x 0 2  + 1 = 13 (vì tiếp tuyến song song với đường thẳng (d): y = 3x + 1). Từ đó ta có: x0 = 1 hoặc x0 = -1

Vậy có hai tiếp tuyến phải tìm là y = 13x + 8 hoặc y = 13x - 8

c) Vì y’ = 12 x 2  + m nên m ≥ 0; y” = –6( m 2  + 5m)x + 12m

    +) Với m ≥ 0 ta có y’ > 0 (khi m = 0; y’ = 0 tại x = 0).

Vậy hàm số (1) luôn luôn đồng biến khi m ≥ 0; y” = –6( m 2  + 5m)x + 12m

    +) Với m < 0 thì y = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra:

y’ > 0 với

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y’ < 0 với

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số (1) đồng biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và nghịch biến trên khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

27 tháng 11 2019

a) Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = (a - 1) x 2  + 2ax + 3a - 2.

Với a = 1, y' = 2x + 1 đổi dấu khi x đi qua -1/2. Hàm số không đồng biến.

Với a ≠ 1 thì với mọi x mà tại đó y' ≥ 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(y' = 0 chỉ tại x = -2, khi a = 2).

Vậy với a ≥ 2 hàm số luôn đồng biến

b) Đồ thị cắt trục hoành tại ba điểm phân biệt khi và chỉ khi phương trình y = 0 có ba nghiệm phân biệt. Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y = 0 có ba nghiệm phân biệt khi và chỉ khi phương trình

(a - 1) x 2  + 3ax + 9a - 6 = 0

Có hai nghiệm phân biệt khác 0. Muốn vậy, ta phải có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ trên, ta được:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Khi a = 3/2 thì

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = 0 ⇔  x 2  + 6x + 5 = 0 ⇔ x = -1 hoặc x = -5.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị như trên Hình 1.18

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên từ đồ thị (C) ta suy ngay ra đồ thị của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

như trên Hình 1.19

Giải sách bài tập Toán 12 | Giải sbt Toán 12

2 tháng 11 2017

a) y = x 4  – 2 x 2

y′ = 4 x 3  – 4x = 4x( x 2  – 1)

y′ = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) y′ = 4 x 3  – 4mx = 4x( x 2  – m)

Để (Cm) tiếp xúc với trục hoành tại hai điểm phân biệt thì điều kiện cần và đủ là phương trình y’ = 0 có hai nghiệm phân biệt khác 0 và y C T  = 0.

    +) Nếu m ≤ 0 thì  x 2  – m ≥ 0 với mọi x nên đồ thị không thể tiếp xúc với trục Ox tại hai điểm phân biệt.

    +) Nếu m > 0 thì y’ = 0 khi x = 0; x =  m  hoặc x = - m .

f(√m) = 0 ⇔ m 2  – 2 m 2  + m 3  –  m 2  = 0 ⇔  m 2 (m – 2) = 0 ⇔ m = 2 (do m > 0)

Vậy m = 2 là giá trị cần tìm.

13 tháng 1 2018

a) Tập xác định: D = R;

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′= 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (– ∞ ; 0), (4; + ∞ ).

Hàm số nghịch biến trên mỗi khoảng (0; 4).

Hàm số đạt cực đại tại x = 0, y C Đ  = 5. Hàm số đạt cực tiểu tại x = 4, y C T  = -3.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị đi qua A(-2; -3); B(6;5).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) x 3  – 6 x 2  + m = 0

⇔  x 3  – 6 x 2  = –m (1)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Số nghiệm thực phân biệt của phương trình (1) bằng số giao điểm phân biệt của đồ thị (C)

và đường thẳng Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra (1) có 3 nghiệm thực phân biệt khi và chỉ khi:

Giải sách bài tập Toán 12 | Giải sbt Toán 12