HÌNH HỌC
Bài 1 Cho Δ DEF vuông tại D . Gọi M, N theo thứ tự là trung điểm của DE và DF.
a) Chứng minh tứ giác MNFE là hình thang.
b) Gọi G là trung điểm của EF. Chứng minh tứ giác MNGE là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEF có
N là trung điểm của EF
P là trung điểm của DF
Do đó: NP là đường trung bình
=>NP//DE
DN=EF/2=10(cm)
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a: Xét ΔDEF có
M là trung điểm của DE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔFED
b: Ta có: A và H đối xứng nhau qua DF
nên DF là đường trung trực của AH
=>B là trung điểm của AH và DF⊥AH tại B
Xét tứ giác DBAC có
\(\widehat{ABD}=\widehat{ACD}=\widehat{BDC}=90^0\)
Do đó: DBAC là hình chữ nhật
c: Xét ΔDEF có
A là trung điểm của EF
AB//DE
Do đó: B là trung điểm của DF
Xét tứ giac DAFH có
B là trung điểm của DF
B là trung điểm của AH
Do đó: DAFH là hình bình hành
mà AD=AF
nên DAFH là hình thoi
a: Xét ΔDEF có
M là trung điểm của FE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔDEF
Suy ra: MN//DE
hay DNME là hình thang vuông
a: Xét ΔDEF có
M là trung điểm của FE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔDEF
Suy ra: MN//DE
hay DNME là hình thang vuông
a: Xét ΔDEF có
M là trung điểm của DE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔDEF
Suy ra: MN//FE
hay MNFE là hình thang