tìm số tự nhiên nhỏ nhất khi chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4, chia 11 dư 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a
Ta có:
a + 2 thuộc BC(3; 4; 5; 6}
Ta lại có:
3 = 3
4 = 22
5 = 5
6 = 2.3
=> BCNN(3; 4; 5; 6) = 22.3.5 = 60
=> a + 2 thuộc B(60)
=> a + 2 thuộc {0; 60; 120; 180; 240; 300; 360; 420;...}
=> a thuộc {58; 118; 178; 238; 298; 358; 418...} (Vì a thuộc N)
Mà nhỏ nhất chia hết cho 11 =>a = 418
Vậy...
Đặt số cần tìm là A thì A + 2 chia hết cho BCNN(3, 4, 5, 6) = 60. Do đó A + 2 có dạng 60k với k nguyên dương. Hơn nữa, A chia hết cho 13 dẫn đến cần tìm k nhỏ nhất sao 60k = 13h + 2 với h nguyên dương và dễ thấy h chẵn.
Đặt h = 2x => 30k = 13x + 1 <=> 4k = 13y + 1 với y = x - 2k. Vậy y chia 4 dư 3, khi đó 13y + 1 ≥ 13.3 + 1 = 40 => k ≥ 10.
Nói cách khác giá trị nhỏ nhất của k là 10, suy ra A = 60.10 - 2 = 598.
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> (x - 1) chia hết 2
(x - 2) chia hết 3
(x - 3) chia hết 4
(x - 4) chia hết 5
(x - 5) chia hết 6
(x - 6) chia hết
=> (x + 1) chia hết cho cả 2, 3, 4, 5, 6, 7
=> (x + 1) là BC(2;3;4;5;6;7)
Mà x nhỏ nhất
=>( x+ 1) là BCNN(2;3;4;5;6;7) = 5.12.7 = 420 => x = 419
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Gọi số đó là a
Vì a chia 2 dư 1; chia 3 dư 2; chia 4 dư 3; chia 5 dư 4; chia 6 dư 5; chia 7 dư 6 nên (a + 1) \(⋮\)2; 3; 4; 5; 6; 7
Số bé nhất chia hết cho các số từ 2 đến 7 là 420
số cần tìm là : 420 - 1 = 419
Đáp số : 419
Gọi số cần tìm là a
(a∈N∗)(a∈ℕ∗)
Khi đó, theo đề bài, ta có :
a : 3 dư 1⇒⇒a + 2⋮3 (1)
a : 4 dư 2⇒⇒a + 2 ⋮4 (2)
a : 5 dư 3⇒⇒a + 2⋮5 (3)
a : 6 dư 4⇒⇒a + 2⋮6 (4)
a⋮11 (5)
Từ (1), (2), (3), (4), (5) và (6)⇒a + 2⋮3; 4; 5; 6 và a⋮11 và a nhỏ nhất
⇒a∈BC(3; 4; 5; 6) ; a⋮11 và a nhỏ nhất
Ta có :
3 = 3
4 = 22
5 = 5
6 = 2. 3
⇒BCNN(3; 4; 5; 6) = 3. 22. 5 = 60
⇒BC(3; 4; 5; 6) = B(60) = {0; 60; 120; 180; 240; 300; 360; 420; 480; ...}
⇒a + 2∈{0; 60; 120; 180; 240; 300; 360; 420; 480; ...}
⇒a∈{-2; 58; 118; 178; 238; 298; 358; 418; 478; ...}mà a∈N; a⋮11 và a nhỏ nhất
⇒a = 418
Vậy số cần tìm là 418
Chúc bạn học tốt nha!
Gọi số phải tìm là x
Theo bài ra ta có: x+2 ⋮ 3,4,5,6
⇒ x + 2 là BC(3,4,5,6)
Mà BCNN (3,4,5,6) = 60 nên x + 2 = 60n
⇔ x = 60n − 2
Vì n ⋮ 11 nên lần lượt thử n = 1,2,3,...,7 thì n = 7 thỏa mãn
Vậy số tự nhiên nhỏ nhất là 418
Gọi số cần tìm là x
Theo đề ra ta có: x+2 chia hết cho 3,4,5,6
⇒x+2 là bội chung của 3,4,5,6
BCNN{3,4,5,6,}=60 nên x+2=60.N-2 (N=1,2,3,...) Mặt khác x chia hết chi 11
ta thấy N=7 thì x=418 chia hết cho 11
Vậy số nhỏ nhất là 418.
tick hộ mình nhaa
gọi số đó là a.
a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 =>(a-2) chia hết cho 3,4,5,6
=>(a-2) thuộc BC(3,4,5,6)
3=3 , 4=2^2 , 5=5 , 6=2x3
BC(3,4,5,6) = 2^2x3x5= 60
(a-2) thuộc B(60)={0;60;120;180;240;...}
=> a thuộc {2;62;182;242;...}
vì a chia hết 11 và nhỏ nhất => a=242
đúng ko
Gọi số cần tìm là a
Do a chia 5 dư 1 nên a-1 chia hết cho 5
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5
=> a+9 chia hết cho 5 (1)
Do a chia 7 dư 5 nên a-5 chia hết cho 7
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7
=> a+9 chia hết cho 7 (2)
Từ (1) và (2) suy ra a+9 là bội của 5 và 7
mà a nhỏ nhất nên a+9 = BCNN (5; 7) = 35
=> a = 26
Vậy số phải tìm là 26