Cho tam giác ABC cân tại A, có AM là trung tuyến, I là trung điểm của AC, E là trung điểm của AB, K đối xứng với M qua I, N đối xứng với M qua E.
a) Tứ giác AMCK là hình gì ? Vì sao ?
b) Tứ giác AKMB là hình gì ? Vì sao?
c) C/m 3 điểm A,K,M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất của tam giác cân cho DABC ta có: AM ^ MC và BM = MC
I là trung điểm của AC và K đối xứng với M qua I nên tứ giác AMCK là hình bình hành
Lại có MK = AC (=2MI)
Þ Tứ giác AMCK là hình chữ nhật.
b) Vì tứ giác AMCK là hình chữ nhật (chứng minh ở a) Þ AK//MC và AK = MC = MB nên tứ giác AKMB là hình bình hành.
c) Nếu tứ giác AKMB là hình thoi thì BA = AK = KM= MB.
Þ DMBA cân tại B Þ B A M ^ = A M B ^ = 900 Þ vô lý.
Vậy không có trường hợp nào của D ABC để AKMB là hình thoi.
Tứ giác AMCK là hcn vì
AI=IC(I là trung điểm của AC)
IM=IK(K là điểm đối xứng vs M qua I)
=>Tứ giác AMCK là hình bình hành(DHNB số 5)
Xét tứ giác AMCK có góc M vuông
=> Hình bình hành AMCK là hcn
Tứ giác ACMB là hình bình hành vì
Ta có Bm ss AK (MC ss AK theo tính chắt hcn)
Xét tam giác ABC có BM=MC,AI=IC
=>IM là đường trung bình của tam giác ABC
=>IM ss Ab
Mà I nằm giữa M và K =>MK ss AB
=>ABMK là hình bình hành (DHNB số 1)
Vì AMCk là hcn nên chỉ cần MI vuông góc CA là hình vuông
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật