K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2020

pó tay toán lớp 1

pó tay toán lớp 1

thiện sờ-tai thiện-stai

25 tháng 11 2020

Đây là youtube đăng 1977 LOGIN

AH
Akai Haruma
Giáo viên
8 tháng 11 2017

Lời giải:

Đặt \(\log_ab=x\Rightarrow \log_ba=\frac{1}{x}\)

a)

\(A=(x+\frac{1}{x}+2)(x-\frac{1}{x}).\frac{1}{x}\)

\(\Leftrightarrow A=(1+\frac{1}{x^2}+2x)(x-\frac{1}{x})=\left(1+\frac{1}{x}\right)^2(x-\frac{1}{x})\)

\(\Leftrightarrow A=(1+\log_ba)^2(\log_ab-\log_ba)\)

-------------------------------------------------------

b) Điều kiện: \(x>0\)

Có \(1=\log_{ab}b.\log_b(ab)=\log_{ab}b(\log_ba+\log_bb)=\log_{ab}b(\frac{1}{x}+1)\)

\(\Rightarrow \log_{ab}b=\frac{x}{x+1}\)

Như vậy:

\(B=\sqrt{x+\frac{1}{x}+2}(x-\frac{x}{x+1})\sqrt{x}\)

\(\Leftrightarrow B=\sqrt{x^2+1+2x}(x-\frac{x}{x+1})=|x+1|.\frac{x^2}{x+1}\)

\(=(x+1)\frac{x^2}{x+1}=x^2=\log_a^2b\) (do \(x>0)\)

9 tháng 11 2017

thanks