Tìm GTLN - GTNN của \(f\left(x\right)=-x^2-4x+2\sqrt{x^2+4x+5}+7\) trên \(\left[-1;3\right]\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
a/ Ta có \(x^2\ge0\)với mọi giá trị của x
=> \(x^2+5x\ge0\)với mọi giá trị của x
=> \(x^2+5x-17\ge0-17=-17\)với mọi giá trị của x.
Dấu "=" xảy ra khi \(x^2+5x=0\)
=> \(x\left(x+5\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy f (x) có GTNN là -17 khi \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\).
Đặt \(\sqrt{x^2+4x+5}=t\Rightarrow t\in\left[\sqrt{2};\sqrt{26}\right]\)
\(f\left(t\right)=-t^2+5+2t+7=-t^2+2t+12\)
\(-\frac{b}{2a}=1\notin\left[\sqrt{2};\sqrt{26}\right]\)
\(f\left(\sqrt{2}\right)=10+2\sqrt{2}\) ; \(f\left(\sqrt{26}\right)=-14+2\sqrt{26}\)
\(\Rightarrow f_{max}=10+2\sqrt{2}\) ; \(f_{min}=-14+2\sqrt{26}\)