K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

a) Đặt: x = a- b; y = b - c ; z = c- a 

Ta có: x + y + z = 0 

=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)

=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

b) Đặt: \(a=x^2-2x\) 

Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)

d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)

Đặt: \(x^2-8=t\)

Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)

\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)

\(=\left(2x^2+9x-16\right)^2\)

15 tháng 12 2015

\(\Leftrightarrow4x\sqrt{2x+3}=x^2+3\left(2x+3\right)\)  (1) đk x tự tìm nhé
Đặt \(\sqrt{2x+3}=a\Rightarrow2x+3=a^2\)\(\left(a\ge0\right)\)
\(pt\left(1\right)\Leftrightarrow4xa=x^2+3a^2\)
\(\Leftrightarrow\left(x-a\right)\left(x-3a\right)=0\)
\(\Leftrightarrow\int^{x=a}_{x=3a}\)
\(\int^{x=\sqrt{2x+3}}_{x=3\sqrt{2x+3}}\)
Tự tìm nốt nhé, h mình phải đi học



\(\)

4 tháng 10 2020

1)

a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+a^2bc+abc^2\right)\)\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(vì a+b+c=0)

b) \(a+b+c=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\left(theoa\right)\)

26 tháng 12 2019

a) Đặt  \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

26 tháng 12 2019

a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

11 tháng 9 2017

(a+b)3-(a-b)3=a3+3a2b+3ab2+b3-(a3-3a2b+3ab2-b3)

                    =a3+3a2b+3ab2+b3-a3+3a2b-3ab2+b3

                        =6a2b+2b3

11 tháng 9 2017

Áp dụng hđt a3-b3=(a-b)(a2+ab+b2) ấy

\(\left(a+b\right)^3-\left(a-b\right)^3=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(3a^2+b^2\right)\)

1 tháng 6 2017

Câu 2 : x^+x+y^2+x = x(x+1) +y(y+1) chia cho vế trái (x+1)(y+1) ...
Bài toán dễ dàng :V

1 tháng 6 2017

Mình nhớ có học qua rùi mà dốt quá trả chữ cho thầy cô hết trơn :)

\(3x^2-5x+2\)

\(=3x^2-3x-2x+2\)

\(=3x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(3x-2\right)\)

Đề sai rồi bạn phải + 2 chứ

26 tháng 9 2016

(a+b+c)^3 thì viết được thành [(a+b)+c)]^3 rồi AD hằng đẳng thức để tính. Còn với (a^3+b^3+c^3) ta viết được (a+b)^3 -3a^2b -3ab^2 + c^3=(a+b)^3 -3ab(a+b)+c^3 ...thay vào rồi đổi biến

11 tháng 10 2017

 k bt nhoak