K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. \(\left(20x^4y-25x^2y^2-3x^2y\right):5x^2y\)

\(=4x^2-5y-\frac{3}{5}\)

b. \(\left(15xy^2+17xy^3+18y^2\right):6y^2\)

\(=\frac{5}{2}x+\frac{17}{6}xy+3\)

c. \(\left[3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2\right]:\left(y-x\right)^2\)

\(=\left[3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2\right]:\left(x-y\right)^2\)

\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)

d. \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)

\(=\left(x-y\right)^2:\left(y-x\right)\)

\(=\left(y-x\right)^2:\left(y-x\right)\)

\(=y-x\)

a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)

(tự rút gọn cái :P)

b, \(8x^3+4x^2y-2xy^2-y^3\)

\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)

\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)

\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)

Mấy cái còn lại nhân tung ra là được mà :))))

21 tháng 2 2020

làm luôn đi cậu

27 tháng 8 2019

help me!!

26 tháng 12 2021

c: \(=x^2+6xy+9y^2\)

e: \(=x^4-4y^2\)

3 tháng 12 2016

chịch chịch chịch

26 tháng 11 2021

Answer:

Câu đầu bạn xem lại.

\(\left(3x+4\right)^2+\left(4x-3\right)^2+\left(2+5x\right).\left(2-5x\right)\)

\(=\left(3x\right)^2+2.2x.4+4^2+\left(4x\right)^2-2.4x.3+3^2+2^2-\left(5x\right)^2\)

\(=9x^2+24x+16+16x^2-24x+9+4-25x^2\)

\(=\left(9x^2+16x^2-25x^2\right)+\left(24x-24x\right)+\left(16+9+4\right)\)

\(=29\)

\(\left(5x+y\right).\left(25x^2-5xy+y^2\right)-\left(5x-y\right).\left(25x^2+5xy+y^2\right)\)

\(=\left(5x+y\right).[\left(5x\right)^2-5x.y+y^2]-\left(5x-y\right).[\left(5x\right)^2+5x.y+y^2]\)

\(=\left(5x\right)^3+y^3-[\left(5x\right)^3-y^3]\)

\(=\left(5x\right)^3+y^3-\left(5x\right)^3+y^3\)

\(=2y^3\)

1 tháng 5 2021

a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

vậy  hệ pt có ndn \(\left\{2;0\right\}\)

1 tháng 5 2021

b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)

\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

vậy hệ pt có ndn \(\left\{2;1\right\}\)

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...