K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

\(2A=2+2^2+2^3+2^4+...+2^{50}\)

\(A=2A-A=2^{50}-1\)

Ta có \(2^{50}=2.2^{49}=2.\left(2^7\right)^7=2.128^7\)

\(5^{19}< 5^{21}=\left(5^3\right)^7=125^7\)

\(\Rightarrow125^7< 128^7< 2.128^7\Rightarrow5^{19}< 2^{50}\Rightarrow5^{19}-1< 2^{50}-1=A\)

7 tháng 5 2021

2A=2*(1+2+22+...+22020)=2+22+...+22021

2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)

A=22021-1<2021

Giải:

A=1+2+22+23+...+22020

2A=2+22+23+24+...+22021

2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)

A=22021-1

⇒A<22021

Chúc bạn học tốt!

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

29 tháng 6 2021

thank you

Giải:

a) \(A=1+2+2^2+2^3+...+2^{2021}\) 

\(2A=2+2^2+2^3+2^4+...+2^{2022}\) 

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\) 

\(A=2^{2022}-1\) 

Vì \(2^{2022}>2^{2021}\) nên \(A>2^{2021}\) 

b) Từ câu (a), ta có:

\(A=2^{2022}-1\) 

\(A=2^{2020}.2^2-1\) 

\(A=\left(2^4\right)^{505}.4-1\) 

\(A=16^{505}.4-1\) 

\(A=\left(\overline{...6}\right)^{505}.4-1\) 

\(A=\overline{...6}.4-1\) 

\(A=\overline{...4}-1\) 

\(A=\overline{...3}\) 

Vậy chữ số tận cùng của A là 3

c) Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}\) 

\(A=1.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{2020}.\left(1+2\right)\) 

\(A=1.3+2^2.3+...+2^{2020}.3\) 

\(A=3.\left(1+2^2+...+2^{2020}\right)⋮3\) 

Vậy \(A⋮3\left(đpcm\right)\)  

d) Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}\) 

\(A=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+...+2^{2019}.\left(1+2+2^2\right)\) 

\(A=1.7+2^3.7+...+2^{2019}.7\) 

\(A=7.\left(1+2^3+...+2^{2019}\right)⋮7\)  

Vậy \(A⋮7\left(đpcm\right)\) 

Chúc bạn học tốt!

14 tháng 6 2021

Cảm ơn nhiều