giúp mk với.Tìm x (3^x-81)*(6x+12)=0
mk cần hoàn thành nó sớm á
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 6x3-x2-486x+81
= 6x3-54x2+53x2-477x-9x+81
= 6x2.(x-9)+53x.(x-9)-9.(x-9)
= (x-9).(6x2+53x-9)
= (x-9)(6x2+54x-x-9)
=(x-9)[6x.(x+9)-(x+9)]=(x-9)(x+9)(6x-1)
b. x3-5x2+3x+9
= x3+x2-6x2-6x+9x+9
=x2.(x+1)-6x.(x+1)+9.(x+1)
=(x+1)(x2-6x+9)=(x+1)(x-3)2
c. x3+3x2+6x+4
= x3+x2+2x2+2x+4x+4
= x2.(x+1)+2x.(x+1)+4.(x+1)
= (x+1)(x2+2x+4)
d.
\(a^2-6a+5=\left(a^2-5a\right)-\left(a-5\right)=a\left(a-5\right)-\left(a-5\right)=\left(a-1\right)\left(a-5\right)\)
\(a^2-7a+12=\left(a^2-3a\right)-\left(4a-12\right)=a\left(a-3\right)-4\left(a-3\right)=\left(a-4\right)\left(a-3\right)\)
\(4a^2+4a-3=4a^2-2a+\left(6a-3\right)=2a\left(2a-1\right)+3\left(2a-1\right)=\left(2a+3\right)\left(2a-1\right)\)
X2 - 6x + 5
= x2 - 6x + 5 + 4 - 4
= x2 - 6x + 9 - 22
= ( x - 3 )2 - 22
= ( x - 3 - 2 ) ( x - 3 + 2 )
\(\dfrac{-4}{x}=\dfrac{x}{-49}\\ \Rightarrow x^2=\left(-4\right)\left(-49\right)\\ \Rightarrow x^2=196\\ \Rightarrow x=\pm14\)
\(\dfrac{3.6}{x-3}=\dfrac{5}{3}\\ \Rightarrow5\left(x-3\right)=3.3.6\\ \Rightarrow5\left(x-3\right)=54\\ \Rightarrow x-3=\dfrac{54}{5}\\ \Rightarrow x=\dfrac{54}{5}+3\\ \Rightarrow x=\dfrac{69}{15}\)
\(\left(2x+1\right):2=12:3\\ \left(2x+1\right):2=4\\2x+1=2\\ 2x=1\\ x=\dfrac{1}{2} \)
\(\left(2x-14\right):3=12:9\\ \left(2x-14\right):3=\dfrac{4}{3}\\ 2x-14=4\\ 2x=16\\ x=8\)
\(1\frac{1}{12}:\left(\frac{1}{3}-\frac{1}{4}\right)-\frac{2}{x}=\frac{2}{5}:\left(\frac{1}{2}-\frac{1}{5}\right)\)
\(\frac{13}{12}:\frac{1}{12}-\frac{2}{x}=\frac{2}{5}:\frac{3}{10}\)
\(13-\frac{2}{x}=\frac{4}{3}\)
\(\frac{2}{x}=\frac{35}{3}\)
\(6=35x\)
\(x=\frac{6}{35}\)
Đk:\(3\le x\le7\)
Có \(\left(\sqrt{x-3}+\sqrt{7-x}\right)^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4;\forall3\le x\le7\)
\(\Leftrightarrow\sqrt{x-3}+\sqrt{7-x}\ge2\) (I)
Có \(6x-7-x^2=2-\left(x^2-6x+9\right)=2-\left(x-3\right)^2\le2\) (II)
Từ (I) và (II) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{\left(x-3\right)\left(7-x\right)}=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow x=3\) (tm)
Vậy...
ĐKXĐ: \(3\le x\le7\)
Ta có:
\(VT=\sqrt{x-3}+\sqrt{7-x}\ge\sqrt{x-3+7-x}=2\)
\(VP=2-\left(x-3\right)^2\le2\)
\(\Rightarrow VT\ge VP\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)=0\\\left(x-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)
\(\left(3^x-81\right)\left(6x+12\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3^x=81\\6x=-12\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)