tìm điều kiện xác định các phân thức
x + y / ( x + 3 ) mũ 2 + ( y -2 ) mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+xy+x^3+y^3=2x^3+2y^3+xy\)
Thay x=-1,y=3 vào biểu thức ta có:
\(2x^3+2y^3+xy=2.\left(-1\right)^3+2.3^3+\left(-1\right).3=2.\left(-1\right)+2.27+\left(-3\right)=-2+54-3=49\)
x3+y3+xy+x3+y3=2x3+2y3+xyx3+y3+xy+x3+y3=2x3+2y3+xy
Thay x=-1,y=3 vào biểu thức ta có:
2x3+2y3+xy=2.(−1)3+2.33+(−1).3=2.(−1)+2.27+(−3)=−2+54−3=49
Nhóm 1: 5x^2y^3;x^2y^3;1/2x^2y^3;x^2y^3
Tổng là 6,5x^2y^3
Nhóm 2: 10x^3y^2;-3x^3y^2;-5x^3y^2
Tổng là 2x^3y^2
\(a,A=\dfrac{2}{3}x^3y.\dfrac{3}{4}xy^2z^2=\dfrac{1}{2}x^4y^3z^2\)
b, Bậc:9
c, Hệ số: `1/2`
Biến: x4y3z2
d, Thay x=-1, y=-2, z=-3 vào A ta có:
\(A=\dfrac{1}{2}x^4y^3z^2=\dfrac{1}{2}\left(-1\right)^4.\left(-2\right)^3.\left(-3\right)^2=\dfrac{1}{2}.\left(-8\right).9=-36\)
a, \(A=\dfrac{2}{3}x^3y.\dfrac{3}{4}xy^2z^2=\dfrac{x^4y^5z^2}{2}\)
b, bậc 11
c, hệ số 1/2 ; biến x^4y^5z^2
d, Thay x = -1 ; y = -1 ; z = -3 ta được
\(\dfrac{1.1.9}{2}=\dfrac{9}{2}\)
\(a,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(b,25-4x^2-4xy-y^2\)
\(=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x+y\right)\)
\(c,x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)
\(\frac{x+y}{\left(x+3\right)^2+\left(y-2\right)^2}\)
ĐKXĐ : \(\left(x+3\right)^2+\left(y-2\right)^2\ne0\)
⇔ \(\hept{\begin{cases}\left(x+3\right)^2\ne0\\\left(y-2\right)^2\ne0\end{cases}}\)
⇔ \(\hept{\begin{cases}x+3\ne0\\y-2\ne0\end{cases}}\)
⇔ \(\hept{\begin{cases}x\ne-3\\y\ne2\end{cases}}\)