a, tim so nguyen to P+10; p+20 cung la so nguyen to
b, tim UCLN(3n+2;4-1);(a thuoc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Trường hợp 1: p=2
=>p+11=13(nhận)
Trường hợp 2: p=2k+1
=>p+11=2k+12(loại)
b: Trường hợp 1: p=3
=>p+8=11 và p+10=13(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+10=3k+12(loại)
Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)
Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2
b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố
Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)
Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)
Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)
Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)
(loại)
Vậy p=3
A+C , Số cần tìm là 3: Bởi vì nếu số cần tìm là p\(\ne\)3
Thì p chia 3 dư 1 hoặc 2
Ta có p = 3n +1 hoặc p= 3n +2
=> p + 2 = 3n+1+2 =3n +3( chia hết cho 3 không phải là số nguyên tố)
p + 4 = 3n +2 + 4=3n+6 ( chia hết cho 3 không phải là số nguyên tố)
p+ 10= 3n+2 +10= 3n+12 ( chia hết cho 3 không phải là số nguyên tố)
p + 14=3n +1+14 = 3n+15( chia hết cho 3 không phải là số nguyên tố)
B) Câu B đề hơi lạ nên mình đoán đại luôn ^^ ( nếu có thêm p+14 là số nguyên tố thì giải tương tự câu A và C )
Với p = 2 => p + 8 = 2 + 8 = 10 là hợp số (loại)
Với p = 3 => p + 8 = 3 + 8 = 11 là số nguyên tố
=> p + 10 = 3 + 10 = 13 là số nguyên tố (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 chia hết cho 3 và lớn hơn 3
=> p + 8 là hợp số (loại)
Nếu p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 chia hết cho 3 và lớn hơn 3
=> p + 10 là hợp số (loại)
Kết luận: Vậy với p = 3 thì p + 8 và p + 10 là số nguyên tố.
p = 2 thì ko tm
p = 3 thì tm
p > 3 => p ko chia hết cho 3
+, Nếu p chia 3 dư 1 => p+8 chia hết cho 3
Mà p+8 > 3 => p+8 là hợp số
+, Nếu p chia 3 dư 2 => p+10 chia hết cho 3
Mà p+10 > 3 => p+10 là hợp số
Vậy x = 3
Tk mk nha
Với P=2\(\Rightarrow\)p+10=12(là hợp số)
→p=2(loại)
Với P=3\(\Rightarrow\)p+10=13\(\Rightarrow\)p+20=23
-Đều là số nguyên tố
-Vậy P=3
Với P>3.ta đuợc 3k+1 và 3n+2
Với 3k+1\(\Rightarrow\)p+20=3k+1+20=3k+21 \(⋮\)3
- vậy 3k+1 là hợp số(loại)
Với 3n+2\(\Rightarrow\)p+10=3n+2+10=3n+12 \(⋮\)3
- vậy 3n+2 là hợp số(loại)
\(\Rightarrow\)p=3
Ta có : \(p=3\Rightarrow p+10=13\) mà 13 là số nguyên tố \(\Rightarrow p+10\) là số nguyên tố
\(p+20=23\) mà 23 là số nguyên tố \(\Rightarrow p+20\) là số nguyên tố .
+ Với p > 3 Khi đó p chia hết cho 3 ta chỉ có 2 khả năng :
\(p=3k+1\Rightarrow p+20=3k+1+20=3k+21=3\left(k+7\right)\) Mà : \(p+20>3\Rightarrow3\left(k+7\right)>3\Rightarrow p+20\) là hợp số .
\(p=3k+2\Rightarrow p+10=3k+2+10=3k+12=3\left(k+4\right)\) Mà :
\(p+10>3\Rightarrow3\left(k+4\right)>3\Rightarrow p+10\) là hợp số .
Vậy p = 3 thì p + 10 và p + 20 là hợp số .