K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

a) Mình nghĩ tam giác ABC nhọn?

Gọi M là trung điểm của BC.

Theo định lý về khoảng cách từ trực tâm đến một điểm và khoảng cách từ tâm đường tròn ngoại tiếp đến cạnh đối diện, ta có AH = 2OM.

Mà AH // OM (Do cùng vuông góc với BC)

Nên \(\overrightarrow{AH}=2\overrightarrow{OM}\).

Ta có: \(\overrightarrow{OB}=\overrightarrow{OM}+\overrightarrow{MB};\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{MC}\Rightarrow\overrightarrow{OB}+\overrightarrow{OC}=2\overrightarrow{OM}+\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{OM}=\overrightarrow{AH}\).

\(\Rightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{AH}=\overrightarrow{OH}\left(đpcm\right)\)

26 tháng 10 2020

b) Ở câu a ta đã chứng minh:

\(\overrightarrow{AH}=\overrightarrow{OB}+\overrightarrow{OC}\).

Tương tự: \(\overrightarrow{BH}=\overrightarrow{OC}+\overrightarrow{OA};\overrightarrow{CH}=\overrightarrow{OA}+\overrightarrow{OB}\).

Cộng vế với vế ta có: \(\overrightarrow{AH}+\overrightarrow{BH}+\overrightarrow{CH}=2\left(\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OA}\right)=2\overrightarrow{OH}\) (câu a).

Đổi dấu hai vế ta có đpcm.

18 tháng 3 2016

A B Co C1 O A1 Ao C B1 Bo H

Đặt \(\overrightarrow{u}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-\overrightarrow{OH}\)

Ta sẽ chứng minh \(\overrightarrow{u}=\overrightarrow{O}\)

Gọi A1, B1, C1 theo thứ tự là hình chiếu của A, B, C ( cũng là hình chiếu của H) trên các đường thẳng BC, CA, AB và gọi Ao, Bo, Co theo thứ tự là trung điểm BC, CA, AB (như hình vẽ)

Chiếu vectơ \(\overrightarrow{u}\)  lên đường thẳng BC theo phương của \(\overrightarrow{AH}\) ta được 

\(\overrightarrow{u_a}=\overrightarrow{A_oA_1}+\overrightarrow{A_oB}+\overrightarrow{A_oC}-\overrightarrow{A_oA_1}=\overrightarrow{O}\)

Suy ra  \(\overrightarrow{u}\)  cùng phương với \(\overrightarrow{AH}\)  (1)

Tương tự như vậy,

ta cũng có  \(\overrightarrow{u}\)   cùng phương với \(\overrightarrow{BH,}\overrightarrow{CH}\) (2)

Từ (1) và (2) và do các vectơ \(\overrightarrow{AH,}\)\(\overrightarrow{BH},\overrightarrow{CH}\) đôi một không cùng phương suy ra \(\overrightarrow{u}=\overrightarrow{O}\)

Vậy \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)

Nhưng \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}\) nên \(\overrightarrow{OH}=3\overrightarrow{OG}\)

Do đó G, H, O thẳng hàng

  
12 tháng 5 2017

TenAnh1 TenAnh1 A = (-4, -6.26) A = (-4, -6.26) A = (-4, -6.26) B = (11.36, -6.26) B = (11.36, -6.26) B = (11.36, -6.26) C = (-4.1, -6.64) C = (-4.1, -6.64) C = (-4.1, -6.64) D = (11.26, -6.64) D = (11.26, -6.64) D = (11.26, -6.64) E = (-4.34, -6.06) E = (-4.34, -6.06) E = (-4.34, -6.06) F = (11.02, -6.06) F = (11.02, -6.06) F = (11.02, -6.06)
\(BH\perp AC\). (1)
\(\widehat{ADC}=90^o\) (góc nội tiếp chắn nửa đường tròn) vì vậy\(AC\perp DC\). (2)
Từ (1) và (2) suy ra BH//DC. (3)
Tương tự HC//BD (vì cùng vuông góc với AB). (4)
Từ (3);(4) suy ra tứ giác HCDB là hình bình hành.
b) Do O là trung điểm của AD nên \(\overrightarrow{HA}+\overrightarrow{HD}=2\overrightarrow{HO}\).
Do M là trung điểm của BC nên \(\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HM}=\overrightarrow{HD}\).
Vì vậy \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HA}+\overrightarrow{HD}=2\overrightarrow{HO}\).
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OH}+\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}\)
\(=3\overrightarrow{HO}+2\overrightarrow{HO}=2\left(\overrightarrow{HO}+\overrightarrow{OH}\right)+\overrightarrow{HO}\)
\(=2.\overrightarrow{0}+\overrightarrow{HO}=\overrightarrow{HO}\).
c) Ta có:
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)\(=3\overrightarrow{OG}\) (theo tính chất trọng tâm tam giác). (5)
Mặt khác theo câu b)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\). (6)
Theo (5) và (6) ta có: \(\overrightarrow{OH}=3\overrightarrow{OG}\).
Suy ra ba điểm O, H, G thẳng hàng ( đường thẳng Ơ-le).

18 tháng 10 2021

undefined