Giải hpt :
\(\hept{\begin{cases}x^3+3\text{x}y^2=4\\y^3+3\text{x}^3y=4\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)
Đơn giản rồi làm tiếp nhé
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
Với x = 0 thì y = 0
Với x \(\ne\)0 thì nhân pt trên cho x ta được
\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)
Lấy (1) + (2) vế theo vế được
\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)
\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)
\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)
Tới đây thì đơn giản roofin làm tiếp nhé
Do \(x^2+y^2+xy=1\Rightarrow x-y=\left(x-y\right)\left(x^2+y^2+xy\right)=x^3-y^3\)
Tức là ta có hệ mới \(\hept{\begin{cases}x^3-y^3=x-y\\x^3+y^3=x+3y\end{cases}}\)
Trừ từng vế của phương trình dưới cho phương trình trên, ta có \(2y^3=4y\Rightarrow2y\left(y^2-2\right)=0\Rightarrow\orbr{\begin{cases}y=0\\y=\sqrt{2}\vee y=-\sqrt{2}\end{cases}}\)
Nếu y = 0 thì \(x^2=1\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Nếu \(y=\sqrt{2}\) thì \(x^2+2+\sqrt{2}x=1\Rightarrow x^2+\sqrt{2}x+1=0\) (Vô nghiệm)
Nếu \(y=-\sqrt{2}\) thì \(x^2+2-\sqrt{2}x=1\Rightarrow x^2-\sqrt{2}x+1=0\) (Vô nghiệm)
Tóm lại phương trình có 2 nghiệm \(\left(1;0\right)\) và \(\left(-1;0\right).\)
a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)
Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)
Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:
\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)
\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)
\(\Rightarrow1-\sqrt{x}\ge0\)
\(\Leftrightarrow x\le1\)
Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1
b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)
Xét pt (1) ta có
\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)
Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành
\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)
\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)
Tới đây đơn giản rồi làm tiếp nhé
\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)
b,
\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)
Tự xử đoạn còn lại nhé
Sửa đề\(\hept{\begin{cases}x^3+3xy^2=4\\y^3+3x^2y=4\end{cases}}\)
=> \(\hept{\begin{cases}x^3+3x^2y+3xy^2+y^3=8\\x^3-3x^2y+3xy^2-y^3=0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+y\right)^3=8\\\left(x-y\right)^3=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=2\\x-y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Sửa đề một chuts\(\hept{\begin{cases}x^3+3xy^2=4\left(1\right)\\y^3+3x^2y=4\left(2\right)\end{cases}}\)
( 1 ) + ( 2 ) = \(x^3+3xy^2+y^3+3x^2y=4+4\)
\(\Leftrightarrow\left(x+y\right)^3-8=0\)
\(\Leftrightarrow\left(x+y\right)^3-2^3=0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2\left(x+y\right)+2^2\right]=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(x^2+2xy+y^2+2x+2y+4\right)=0\)
Đến đây bạn tự giải tiếp nhé :)