tìm số có 4 chữ số abcd biết rằng abcd=dcba và số abcd bằng tích của 2 số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Gọi hai số cần tìm có dạng là a;a+1
Theo đề, ta có: a(a+1)=156
=>a^2+a-156=0
=>(a+13)(a-12)=0
=>a=12
=>Hai số cần tìm là 12 và 13
2:
Gọi ba số liên tiếp cần tìm lần lượt là a;a+1;a+2
Theo đề, ta có: a(a+1)(a+2)=3360
=>a^3+3a^2+2a-3360=0
=>a=14
=>Ba số cần tìm là 14;15;16
câu 1. Nhận xét:
Loại suy:
3193 không chia hết cho 2 suy ra 3193 ko chia hết cho 2k, 4k, 6k, 8k
Tương tự 3193 không chia hết cho 3k, 7k, 5k, 9k suy ra 3193 là số nguyên tố
Gọi số chia là ab => b chỉ có thể là 1, 3, 7, 9
Ngoài ra, ta nhận thấy thương của phép chia cũng phải là một số nguyên tố (kí hiệu là *)
Phép thử:
*b=9 => a=1, 2, 5, 7, 9 => thương ko là số tự nhiên
*b=7 => a=1, 3, 4, 6, 9 => thương ko là số tự nhiên
*b=3 => a=1, 2, 4, 5, 7, 8 => thương ko là số tự nhiên
*b=1 => a=3, 4, 6, 1 => tìm được a=3
=> Thương : 103 ; số chia : 31
ọi số cần tìm là abcd
=> abcd.2 - 1004 = dcba
Dễ thấy a là số chẵn ( vì 2d - 4 là số chẵn) và a khác 0
mà d<10 suy ra a<6
=> a=2 hoặc a=4
với a=2 => d=3. thay vào ta tính được b = c = 0
a=4 => d=9
=> 4009.2 + bc.200 - 1004 = 9004 + cb.100
=> bc.20 - cb.10 = 199
=> bc.10=199 ( loại vì b,c là số tự nhiên)
Vậy số phải tìm là abcd = 2003
ta có abcd chia hết cho 3 và 5 nên
d phải là tận cùng bằng 5 hoặc 0
a+b+c+d phải chia hết cho 3
từ đó ta rút ra có 2 số chia hết cho 5 là 8765 và 3210 nhưng vì 8765 ko chia hết cho 3 nên
số cần tìm là 3210