Trong mp toạ độ Oxy cho đg thẳng d có pt x +y -2=0. Viết pt đường thẳng d' là ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm I(-1;-1) tỉ số k=1/2 và phép quay tâm O góc -45°
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
14.
\(\overrightarrow{AB}=\left(-3;10\right)\) nên pt tham số của AB là: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+10t\end{matrix}\right.\)
15.
Do d song song delta nên d nhận \(\left(2;-1\right)\) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=2t\\y=-4-t\end{matrix}\right.\)
18.
d có vtcp là (2;3) nên d nhận (3;-2) là 1 vtpt
Phương trình d:
\(3\left(x+1\right)-2\left(y-0\right)=0\Leftrightarrow3x-2y+3=0\)
19.
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt
Phương trình d:
\(4\left(x+2\right)+3\left(y-4\right)=0\Leftrightarrow4x+3y-4=0\)
14.
\(\overrightarrow{AB}=\left(-3;10\right)\Rightarrow\) đường thẳng AB nhận \(\left(10;3\right)\) là 1 vtpt
Phương trình AB:
\(10\left(x-3\right)+3\left(y+4\right)=0\Leftrightarrow10x+3y-18=0\)
16.
Do d song song denta nên d nhận \(\left(3;-2\right)\) là 1 vtpt
Phương trình d:
\(3\left(x-2\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y-4=0\)
17. Cho d vuông góc denta nên d nhận \(\left(1;-1\right)\) là 1vtpt
Phương trình d:
\(1\left(x-4\right)-1\left(y+1\right)=0\Leftrightarrow x-y-5=0\)
4.
Để phép tịnh tiến theo \(\overrightarrow{v}\) biến d thành chính nó thì \(\overrightarrow{v}\) phải là 1 vecto chỉ phương của d
Khi đó \(\overrightarrow{v}=k\left(1;2\right)\) với k là số thực
5.
Đường tròn tâm \(I\left(2;1\right)\) bán kính \(R=4\)
Phép tịnh tiến theo \(\overrightarrow{v}\) biến đường tròn thành đường tròn tâm I' bán kính R=4
\(I'=T_{\overrightarrow{v}}\left(I\right)\Rightarrow\left\{{}\begin{matrix}x_{I'}=2+1=3\\y_{I'}=3+1=4\end{matrix}\right.\) \(\Rightarrow I'\left(3;4\right)\)
Phương trình đường tròn: \(\left(x-3\right)^2+\left(y-4\right)^2=16\)
2.
Đường thẳng d có 1 vtcp là \(\left(-2;3\right)\) hoặc \(\left(2;-3\right)\) cũng được
7.
Phương trình tham số của d: \(\left\{{}\begin{matrix}x=1-4t\\y=-4+9t\end{matrix}\right.\)
Gọi M là 1 điểm bất kì thuộc d \(\Rightarrow2x_M-y_M+1=0\) (1)
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
Ta có: \(\left\{{}\begin{matrix}x_M=x_{M'}-1\\y_M=y_{M'}+2\end{matrix}\right.\) thế vào (1)
\(\Rightarrow2\left(x_{M'}-1\right)-\left(y_{M'}+2\right)+1=0\)
\(\Leftrightarrow2x_{M'}-y_{M'}-3=0\)
Vậy pt d' là: \(2x-y-3=0\)
13.
\(\overrightarrow{AB}=\left(-4;5\right)\) nên đường thẳng AB nhận \(\left(-4;5\right)\) hoặc \(\left(4;-5\right)\) là 1 vtcp
9.
d có 1 vtcp là \(\left(1;-2\right)\) nên d nhận \(\left(2;1\right)\) là 1 vtpt
Thay \(t=0\Rightarrow\) d đi qua điểm \(A\left(5;-9\right)\)
Phương trình d:
\(2\left(x-5\right)+1\left(y+9\right)=0\Leftrightarrow2x+y-1=0\)
Theo đề, ta có
m-1=-3 và (m-1)+n=-1
=>m=-2 và m+n=0
=>m=-2 và n=2