K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi 3 số nguyêntố đó là: a, b, c

Ta có: 5(a+b+c)

=>abc chia hết cho 5, do a,b,c nguyên tố

=>chỉ có trường hợp 1 trong 3 số bằng 5, giả sử a=5

=>bc=b+c+5=>(b-1)(c-1)=6

trương hợp 1: b - 1 = 1=>b=2;c - 1 = 6=>c=7

trường hợp 2: b - 1= 2, c - 1 = 3 =>c=4(loại)

vậy 3 số nguyên tố đó là: 2;5;7

12 tháng 1 2022

31B

32C

33B

34 underline "they"?

18 tháng 10 2020

https://olm.vn/hoi-dap/detail/227275074177.html

18 tháng 10 2020

Hai số nguyên tố cùng nhau là 2 số liền nhau và có UCLN và BCNN =1

Mà 2 số nguyên tố cùng nhau chỉ có một đó là 2;3

=>p=2+3

p=5

Mà 5 cũng là số nguyên tố

Vậy khi a và b là 2 số nguyên tố cùng nhau thì a+b sẽ ra được một số nguyên tố

Học tốt

19 tháng 5 2021

vẽ lại mạch ta có RAM//RMN//RNB

đặt theo thứ tự 3 R là a,b,c

ta có a+b+c=1 (1)

điện trở tương đương \(\dfrac{1}{R_{td}}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow I=\dfrac{U}{R_{td}}=9.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) với a,b,c>0

áp dụng bất đẳng thức cô si cho \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\)  \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{\sqrt[3]{abc}}\ge\dfrac{3}{\left(\dfrac{a+b+c}{3}\right)}=\dfrac{9}{a+b+c}=9\)

\(\Leftrightarrow9\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge81\Leftrightarrow I\ge81\) I min =81 ( úi dồi ôi O_o hơi to mà vẫn đúng đá nhỉ)

dấu ''='' xảy ra \(\Leftrightarrow a=b=c\left(2\right)\)

từ (1) (2) \(\Rightarrow a=b=c=\dfrac{1}{3}\left(\Omega\right)\)

vậy ... (V LUN MẤT CẢ BUỔI TỐI R BÀI KHÓ QUÁ EM ĐANG ÔN HSG À )

 

 

19 tháng 5 2021

em ơi chụp cả cái mạch điện a xem nào sao chụp nó bị mất r

11 tháng 1 2022

Đề bài thiếu thì phải

32, A

33,B

34,C

10 tháng 12 2021

Câu 1.

Khi mở khóa K:

\(I_m=I_1=0,4A\)

Khi đóng khóa K:

\(I_m=I_1+I_2=0,6\Rightarrow I_2=0,2A\)

\(U_1=0,4\cdot5=2V\)

\(\Rightarrow U_2=U_1=2V\)

\(\Rightarrow U=U_1=U_2=2V\)

\(R_2=\dfrac{U_2}{I_2}=\dfrac{2}{0,2}=10\Omega\)

12 tháng 12 2021

Đề 1:

Bài 1:

\(a,=\sqrt{\left(\sqrt{7}+1\right)^2}-\left|-1+\sqrt{7}\right|=\sqrt{7}+1-\sqrt{7}+1=2\\ b,=2\sqrt{2}-4\sqrt{2}-5\sqrt{2}+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{2}}{2}-7\sqrt{2}=\dfrac{-13\sqrt{2}}{\sqrt{2}}\)

Bài 2:

\(PT\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=\dfrac{1}{2}\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}+\dfrac{1}{2}=1\\x=-\dfrac{1}{2}+\dfrac{1}{2}=0\end{matrix}\right.\)

Bài 3:

\(a,M=\dfrac{a-2\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{2\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}=\dfrac{2}{\sqrt{a}+1}\\ b,M< 1\Leftrightarrow\dfrac{2}{\sqrt{a}+1}-1< 0\Leftrightarrow\dfrac{1-\sqrt{a}}{\sqrt{a}+1}< 0\\ \Leftrightarrow1-\sqrt{a}< 0\left(\sqrt{a}+1>0\right)\\ \Leftrightarrow a>1\)

23 tháng 9 2021

Ta có: \(\left\{{}\begin{matrix}p+e+n=52\\p=e\\p+e-n=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n=36\\p=e\\p+e+n=52\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=18\\p=e=17\end{matrix}\right.\)