Cho a,b >0 và a +b =1
Tìm GTNN của C = \(\frac{1}{ab}+\frac{1}{a^2+b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))
Sử dụng BĐT Svacxo ta có :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)
bài làm của e :
Áp dụng BĐT Svacxo ta có :
\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)
Tiếp tục sử dụng Svacxo thì ta được :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)
Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)
Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:
https://olm.vn/hoi-dap/detail/259605114604.html
Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1
chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)
Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)
Q=\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ac}+\frac{7}{ab+bc+ac}\)
ap dung bdt cauchy-schwarz dang engel ta co
\(Q\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+ab+bc+ac+ab+ac+bc}+\frac{7}{ab+ac+bc}\)
=\(\frac{3^2}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ac}\) \(\ge3^2+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+21=30\)
dau = xay ra khi a=b=c=1/3
Áp dụng bđt Cô-si: \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)
\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=\frac{1}{a}\)
\(\frac{c}{ab}+\frac{a}{bc}\ge2\sqrt{\frac{c}{ab}.\frac{a}{bc}}=\frac{1}{b}\)
cộng vế với vế ta được \(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
=>\(A=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=2
Vậy minA=3/2 khi a=b=c=2
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}+\frac{1}{2ab+2bc+2ca}\)+2ca
Do a,b,c dương nên ADBĐT Cauchy ta được:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}\ge\frac{4}{(a+b+c)^2}=4\)
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow2ab+2bc+2ca\le\frac{2}{3}\)\(\Rightarrow\frac{1}{2ab+2bc+2ca}\ge\frac{3}{2}\)
Suy ra P\(\ge4+\frac{3}{2}=\frac{11}{2}\)
Dấu = khi a=b=c=\(\frac{1}{3}\)
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
\(C=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\)
Vì \(a,b>0\)\(\Rightarrow\) Áp dụng bất đẳng thức cộng mẫu ta có:
\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}=\frac{4}{1}=4\)
Vì \(a,b>0\)\(\Rightarrow\)Áp dụng bđt Cô si ta có: \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow2\sqrt{ab}\le1\)\(\Rightarrow\left(2\sqrt{ab}\right)^2\le1\)
\(\Leftrightarrow4ab\le1\)\(\Leftrightarrow2ab\le\frac{1}{2}\)\(\Rightarrow\frac{1}{2ab}\ge2\)
\(\Rightarrow C=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4+2=6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(minC=6\)\(\Leftrightarrow x=y=\frac{1}{2}\)
bài này đã có rất nhiều bạn hỏi rồi
Ta có hai bất đẳng thức phụ quen thuộc sau : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*) ; \(2xy\le\frac{\left(x+y\right)^2}{2}\)(**)
BĐT(*) \(< =>\frac{x+y}{xy}\ge\frac{4}{x+y}< =>x^2+2xy+y^2\ge4xy< =>\left(x-y\right)^2\ge0\)(đúng)
BĐT(**)\(< =>x^2+2xy+y^2\ge4xy< =>\left(x-y\right)^2\ge0\)(đúng
Lại có \(C=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\)
Sử dụng bất đẳng thức phụ (*) : \(C\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}=\frac{1}{2ab}+\frac{4}{\left(a+b\right)^2}=\frac{1}{2ab}+4\)
Sử dụng bất đẳng thức phụ (**) : \(\frac{1}{2ab}+4\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+4=2+4=6\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)
Vậy GTNN của C = 6 đạt được khi a = b = 1/2