Bt: Cho tam giác ABC có AB=12 cm,AC= 8cm,\(\widehat{B}\)= 60o.
a) Tính BC.
b) Tính diện tích tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
a,Ta thấy tam giác ABN và tam giác BMN có chung chiều cao
Đáy AB gấp 4 lần đáy BM
Từ trên ta có thể kết luận rằng : Tam giác ABN gấp 4 lần Tam giác BMN
b, Chiều cao của tam giác BNC bằng chiều cao của tam giác ABC
Chiều cao của tam giác BNC là : 12 x 2 : 8 = 3 cm
Diện tích tam giác BNC là : 2 x 3 : 2 = 3 cm2
c, Ta thấy tam giác BNC và tam giác BMN có chiều cao và đáy bằng nhau
tam giác BMN có Diện tích = tam giác BNC = 3 cm2
Diện tích tứ giác BCMN là : 3 + 3 = 6 cm2
d, tam giác AMN có chiều cao bằng tam giác ABC = 3 cm ( có 2 cách )
Đáy AM là : 8 + 2 = 10 cm
Diện tích tam giác AMN là : 3 x 10 : 2 = 15 cm2
\(\dfrac{B}{C}=\dfrac{4}{3}\Rightarrow B=\dfrac{4C}{3}\)
\(B+C=180^0-A=105^0\Rightarrow C+\dfrac{4C}{3}=105^0\Rightarrow C=45^0\) \(\Rightarrow B=60^0\)
Kẻ đường cao AD ứng với BC (do 2 góc B và C đều nhọn nên D nằm giữa B và C)
Trong tam giác vuông ABD:
\(sinB=\dfrac{AD}{AB}\Rightarrow AD=AB.sinB=10,6.sin60^0\approx9,2\left(cm\right)\)
\(cosB=\dfrac{BD}{AB}\Rightarrow BD=AB.cosB=10,6.cos60^0=5,3\left(cm\right)\)
Trong tam giác vuông ACD:
\(tanC=\dfrac{AD}{CD}\Rightarrow CD=AD.tanC=9,2.tan45^0=9,2\left(cm\right)\)
\(sinC=\dfrac{AD}{AC}\Rightarrow AC=\dfrac{AD}{sinC}=\dfrac{9,2}{sin45^0}\approx13\left(cm\right)\)
\(BC=BD+CD=5,3+9,2=14,5\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.9,2.14,5=66,7\left(cm^2\right)\)
bài giải
chú ý dấu nhân viết tắt bằng kí hiệu *
BC là
60+(12-8)=64 (cm)
diện tích hình tam giác ABC là
(12+8+64):2=42 (cm)
đáp số 42 cm
chúc bạn làm bài tập tốt
dippi
bạn cute thật đó ><