K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

Cộng theo từng vế của hai phương trình ta được: 

 \(x^2-y^2=\left(2y+3x-6\right)-\left(2x+3y-6\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x-y\)

\(\Leftrightarrow\left(x+y-1\right)\left(x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-y\end{cases}}\)

TH1: \(x=y\)thay vào phương trình thứ nhất ta được: \(x^2=2x+3x-6\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}y=3\\y=2\end{cases}}\)

TH2: \(x=1-y\)thay vào phương trình thứ nhất ta được:

\(\left(1-y\right)^2=2y+3\left(1-y\right)-6\)

\(\Leftrightarrow y^2-2y+1=-y-3\)

\(\Leftrightarrow y^2-y+4=0\)(vô nghiệm)

Vậy hệ phương trình có nghiệm \(\left(x,y\right)\in\left\{\left(3;3\right),\left(2;2\right)\right\}\)

15 tháng 10 2020

Trừ theo từng vế, nhầm.

18 tháng 7 2018

1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)

\(2y=-4\Rightarrow y=-2\)

                    \(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )

2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>

\(x+3x-2=6\)

\(4x=8\Rightarrow x=2\)

               \(\Rightarrow y=6-2=4\)

3)  \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2

\(3x-5+x=3\)

\(4x=8\Rightarrow x=2\)

                \(2y=3\Rightarrow y=\frac{3}{2}\)

4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )

\(5+y+3y=1\)

\(4y=-4\Rightarrow y=-1\)

                   \(\Rightarrow2x=4\Rightarrow x=2\)

mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...

Dùng cái đầu đi ạ

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

26 tháng 5 2019

a,
x=1; y=1

b,

x=1; y=-1

26 tháng 5 2019

a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)

Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)

Lấy (3) - (2) ta được \(y=1\)

Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1

Vậy x = y = 1

20 tháng 7 2019

mấy bài này dễ mà bạn

2 tháng 12 2019

\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)

Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)

Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)

\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)

Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)

Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)

\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)

\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)

\(\Rightarrow4x+3y-4x-2y=-2\)

\(\Rightarrow y=-2\)

Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)

Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Làm tương tự nha cậu 

18 tháng 5 2020

JKILO

29 tháng 12 2019

\(\hept{\begin{cases}x^2=3x+2y\\y^2=3y+2x\end{cases}}\)

\(\Rightarrow x^2-y^2=3\left(x-y\right)-2\left(x-y\right)\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)=\left(x-y\right)\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)-\left(x-y\right)=0\)

\(\Rightarrow\left(x+y-1\right)\left(x-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\x-y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=1\\x=y\end{cases}}\)

7 tháng 1 2022

Đây ok chưa

Ko cop

Đặt \(\hept{\begin{cases}x+3y+2z\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{cases}}\)

Cộng \(\left(2\right)+\left(3\right)\)ta có \(\hept{\begin{cases}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{cases}}\)

Trừ \(\left(1\right)-\left(4\right)\), ta có : \(4x=4=x-1\)

Thay về hệ phương trính ta được :

\(\hept{\begin{cases}1+3y+2z=8\\2.1+2y+z=6\end{cases}}\hept{\begin{cases}y=1\\z=2\end{cases}}\)

Vậy hệ phương trình có nghiệm \(\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)

Hoàng Phong cop ở vietjjack

Tham khảo bài làm ạ:

TL:

Đưa hệ phương trình về hệ dạng tam giác bằng cách dần ẩn số, ta có:

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\4x+4y+2z=12\\6x+2y+2z=12\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\5x-y=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\8x=8\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)

Vậy hệ phương trình có nghiệm (x;y;z) = (1;1;2)

HT

Lấy (1) trừ (2) ta được

\(2\left(x^2-y^2\right)-3\left(x-y\right)=y^2-x^2\)

\(\left(x-y\right)\left(2x+2y-3+x+y\right)=0\)

\(\left(x-y\right)\left(x+y-1\right)=0\)(chia cả 2 vế cho 3)

\(\Rightarrow\orbr{\begin{cases}x-y=0\\x+y=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=y\\x=1-y\end{cases}}\)

Vậy................