K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020
Mọi người giúp mk với ạ!Mk sắp kiểm tra rồi😭😭

a: góc MDH=90 độ-góc DMH

=90 độ-2*góc MDF

=90 độ-2*góc E

=góc F+góc E-2*góc E

=góc F-gócE

b: (EF+DH)^2-(DF+DE)^2

=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE

=DH^2>0

=>EF+DH>DF+DE
=>EF-DE>DF-DH

a) Ta có: \(DN=\dfrac{DE}{2}\)(N là trung điểm của DE)

\(DM=\dfrac{DF}{2}\)(M là trung điểm của DF)

mà DE=DF(ΔDEF cân tại D)

nên DN=DM

Xét ΔDNH vuông tại H và ΔDMH vuông tại M có 

DN=DM(cmt)

DH chung

Do đó: ΔDNH=ΔDMH(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{NDH}=\widehat{MDH}\)(hai góc tương ứng)

hay \(\widehat{EDH}=\widehat{FDH}\)

Xét ΔEDH và ΔFDH có 

DE=DF(ΔDEF cân tại D)

\(\widehat{EDH}=\widehat{FDH}\)(cmt)

DH chung

Do đó: ΔEDH=ΔFDH(c-g-c)

Suy ra: HE=HF(Hai cạnh tương ứng)

25 tháng 12 2022

hình tự kẻ

tứ giác ADBH có:

D vuông (gt)

Góc HAD vuông ( AH vuông DE )

Góc HBD vuông ( BH vuông DF )

=> tứ giác ADBH là HCN

=> AB=DH; I là trung điểm của AB và DH ( tính chất hcn )

Ta có:

AB=DH (cmt)

I là trung điểm của AB và DH (cmt)

=> IH = IB 

Tam giác HIB có:

IH = IB (cmt)

=> tam giác HIB cân tại I

=> góc IHB = góc IBH (2 góc đáy trong tam giác cân )

 

a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:

\(EF^2=DE^2+DF^2\)

\(\Leftrightarrow EF^2=9^2+12^2=225\)

hay EF=15(cm)

Vậy: EF=15cm

30 tháng 3 2021

a) Xét tam giác EDF có: EF2 = DE2 + DF(đ/lí py-ta-go)

                                         =>  EF= 9+ 122

                                                 =>  EF2 = 81 + 144 = 225

                                         =>  EF = 112,5 cm

3 tháng 2 2019

tu  ve hinh :

cau b la vuong goc phai k

a, tamgiac ABC can tai A(gt) => AB = AC va goc ABC = goc ACB (dn)

goc ADB = goc ADC do AD | BC (GT)

=> tamgiac ADB = tamgiac ADC (ch - gn)

=> BD = DC (dn)

b, xet tamgiac BHD va tamgiac CKD co :  BD = DC (Cau a)

goc ABC = goc ACB (cau a)

goc BHD = goc DKC = 90 do HD | AB va HK | AC (gt)

=> tamgiac BHD = tamgiac CKD (ch - gn)

=> HD = DK (dn)

c, xet tamgiac AHD va tamgiac AKD co : AD chung

HD = DK (cau b) 

goc AHD = goc AKD = 90 do HD | AB va HK | AC (gt) 

=> tamgiac AHD = tamgiac AKD  (ch - cgv)

=> tamgiac AHK can tai A (dn)

=> goc AHK = (180 - goc BAC) : 2

tamgiac ABC can tai A (gt) => goc ABC = (180 - goc BAC) : 2

=> goc AHK = goc ABC  2 goc nay dong vi

=> HK // BC (tc)

d, tu ap dung py-ta-go 

4 tháng 2 2019

bài 2 nữa ạ

14 tháng 4 2020

a) Xét tam giác DEH và tam giác DFH ta có:

        DE = DF ( tam giác DEF cân tại D )

        DEH = DFH ( tam giác DEF cân tại D )

        EH = EF ( H là trung điểm của EF )

=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)

=> DHE=DHF(hai góc tương ứng)

Mà DHE+DHF=180 độ  =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )

 b) Xét tam giác MEH và tam giac NFH ta có:

          EH=FH(theo a)

          MEH=NFH(theo a)

  => tam giác MEH = tam giác NFH ( ch-gn)

  => HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )

c) Ta có : +) DM+ME=DE =>DM=DE-ME

                +) DN+NF=DF => DN=DF-NF

Mà DE=DF(theo a)   ;     ME=NF( theo b tam giác MEH=tam giác NFH)

=>DM=DN => tam giác DMN cân tại D 

Xét tam giac cân DMN ta có:

     DMN=DNM=180-MDN/2      (*)

Xét tam giác cân DEF ta có:

     DEF=DFE =180-MDN/2       (*)

Từ (*) và (*) Suy ra góc DMN = góc DEF

Mà DMN và DEF ở vị trí đồng vị

=> MN//EF (dpcm)

d) Xét tam giác DEK và tam giác DFK ta có:

        DK là cạnh chung

        DE=DF(theo a)

    => tam giác DEK= tam giác DFK(ch-cgv)

   =>DKE=DKF(2 góc tương ứng)

   =>DK là tia phân giác của góc EDF       (1)

Theo a tam giac DEH= tam giac DFH(c.g.c)

   =>EDH=FDH(2 góc tương ứng)

   =>DH là tia phân giác của góc EDF        (2)

Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)