Cho tam giác DEF vuông tại D, đường cao DH, biết DE= 12 cm và EF = 20 cm. Vẽ AH vuông góc với DE tại A,HB vuông góc với DF tại B. Gọi K là trung điểm của EF và M là trung điểm của DK Tính độ dài AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc MDH=90 độ-góc DMH
=90 độ-2*góc MDF
=90 độ-2*góc E
=góc F+góc E-2*góc E
=góc F-gócE
b: (EF+DH)^2-(DF+DE)^2
=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE
=DH^2>0
=>EF+DH>DF+DE
=>EF-DE>DF-DH
a) Ta có: \(DN=\dfrac{DE}{2}\)(N là trung điểm của DE)
\(DM=\dfrac{DF}{2}\)(M là trung điểm của DF)
mà DE=DF(ΔDEF cân tại D)
nên DN=DM
Xét ΔDNH vuông tại H và ΔDMH vuông tại M có
DN=DM(cmt)
DH chung
Do đó: ΔDNH=ΔDMH(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{NDH}=\widehat{MDH}\)(hai góc tương ứng)
hay \(\widehat{EDH}=\widehat{FDH}\)
Xét ΔEDH và ΔFDH có
DE=DF(ΔDEF cân tại D)
\(\widehat{EDH}=\widehat{FDH}\)(cmt)
DH chung
Do đó: ΔEDH=ΔFDH(c-g-c)
Suy ra: HE=HF(Hai cạnh tương ứng)
hình tự kẻ
tứ giác ADBH có:
D vuông (gt)
Góc HAD vuông ( AH vuông DE )
Góc HBD vuông ( BH vuông DF )
=> tứ giác ADBH là HCN
=> AB=DH; I là trung điểm của AB và DH ( tính chất hcn )
Ta có:
AB=DH (cmt)
I là trung điểm của AB và DH (cmt)
=> IH = IB
Tam giác HIB có:
IH = IB (cmt)
=> tam giác HIB cân tại I
=> góc IHB = góc IBH (2 góc đáy trong tam giác cân )
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=9^2+12^2=225\)
hay EF=15(cm)
Vậy: EF=15cm
tu ve hinh :
cau b la vuong goc phai k
a, tamgiac ABC can tai A(gt) => AB = AC va goc ABC = goc ACB (dn)
goc ADB = goc ADC do AD | BC (GT)
=> tamgiac ADB = tamgiac ADC (ch - gn)
=> BD = DC (dn)
b, xet tamgiac BHD va tamgiac CKD co : BD = DC (Cau a)
goc ABC = goc ACB (cau a)
goc BHD = goc DKC = 90 do HD | AB va HK | AC (gt)
=> tamgiac BHD = tamgiac CKD (ch - gn)
=> HD = DK (dn)
c, xet tamgiac AHD va tamgiac AKD co : AD chung
HD = DK (cau b)
goc AHD = goc AKD = 90 do HD | AB va HK | AC (gt)
=> tamgiac AHD = tamgiac AKD (ch - cgv)
=> tamgiac AHK can tai A (dn)
=> goc AHK = (180 - goc BAC) : 2
tamgiac ABC can tai A (gt) => goc ABC = (180 - goc BAC) : 2
=> goc AHK = goc ABC 2 goc nay dong vi
=> HK // BC (tc)
d, tu ap dung py-ta-go
a) Xét tam giác DEH và tam giác DFH ta có:
DE = DF ( tam giác DEF cân tại D )
DEH = DFH ( tam giác DEF cân tại D )
EH = EF ( H là trung điểm của EF )
=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)
=> DHE=DHF(hai góc tương ứng)
Mà DHE+DHF=180 độ =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )
b) Xét tam giác MEH và tam giac NFH ta có:
EH=FH(theo a)
MEH=NFH(theo a)
=> tam giác MEH = tam giác NFH ( ch-gn)
=> HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )
c) Ta có : +) DM+ME=DE =>DM=DE-ME
+) DN+NF=DF => DN=DF-NF
Mà DE=DF(theo a) ; ME=NF( theo b tam giác MEH=tam giác NFH)
=>DM=DN => tam giác DMN cân tại D
Xét tam giac cân DMN ta có:
DMN=DNM=180-MDN/2 (*)
Xét tam giác cân DEF ta có:
DEF=DFE =180-MDN/2 (*)
Từ (*) và (*) Suy ra góc DMN = góc DEF
Mà DMN và DEF ở vị trí đồng vị
=> MN//EF (dpcm)
d) Xét tam giác DEK và tam giác DFK ta có:
DK là cạnh chung
DE=DF(theo a)
=> tam giác DEK= tam giác DFK(ch-cgv)
=>DKE=DKF(2 góc tương ứng)
=>DK là tia phân giác của góc EDF (1)
Theo a tam giac DEH= tam giac DFH(c.g.c)
=>EDH=FDH(2 góc tương ứng)
=>DH là tia phân giác của góc EDF (2)
Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)