Phân tích đa thức thnhf nhân tử bằng phương pháp dùng hằng đẳng thức
a/9(2x-3)2 - 4(x+1)2
b/(x2+4y2-20)2 - 16(xy-4)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^3y^3+125\)
\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)
b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)
\(=\left(2x-y\right)^3\)
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
a) \(\left(2x+5\right)^2\)\(-\left(x-9\right)^2\)
=\(\left(2x+5+x-9\right).\left(2x+5-x+9\right)\)
=\(\left(3x-4\right).\left(x+14\right)\)
a) \(9\left(2x-3\right)^2-4\left(x+1\right)^2\)
\(=\left[3\left(2x-3\right)-2\left(x+1\right)\right]\left[3\left(2x-3\right)+2\left(x+1\right)\right]\)
\(=\left(6x-9-2x-2\right)\left(6x-9+2x+2\right)\)
\(=\left(4x-11\right)\left(8x-7\right)\)
b) \(\left(x^2+4y^2-20\right)-16\left(xy-4\right)^2\)
\(=\left[\left(x^2-4xy+4y^2\right)-4\right]\left[\left(x^2+4xy+4y^2\right)-36\right]\)
\(=\left[\left(x-2y\right)^2-4\right]\left[\left(x+2y\right)^2-36\right]\)
\(=\left(x-2y-2\right)\left(x-2y+2\right)\left(x+2y-6\right)\left(x+2y+6\right)\)
a. 9 ( 2x - 3 )2 - 4 ( x + 1 )2
= [ 3 ( 2x - 3 ) ]2 - [ 2 ( x + 1 ) ]2
= [ 3 ( 2x - 3 ) - 2 ( x + 1 ) ] [ 3 ( 2x - 3 ) + 2 ( x + 1 ) ]
= ( 6x - 9 - 2x - 2 ) ( 6x - 9 + 2x + 2 )
= ( 4x - 11 ) ( 8x - 7 )
b. ( x2 + 4y2 - 20 )2 - 16 ( xy - 4 )2
= ( x2 + 4y2 - 20 )2 - [ 4 ( xy - 4 ) ]2
= [ x2 + 4y2 - 20 - 4 ( xy - 4 ) ] [ x2 + 4y2 - 20 + 4 ( xy - 4 ) ]
= ( x2 + 4y2 - 20 - 4xy + 16 ) ( x2 + 4y2 - 20 + 4xy - 16 )
= ( x2 + 4y2 - 4xy - 4 ) ( x2 + 4y2 + 4xy - 36 )
= [ ( x - 2y )2 - 22 ] [ ( x + 2y )2 - 62 ]
= ( x - 2y - 2 ) ( x - 2y + 2 ) ( x + 2y - 6 ) ( x + 2y + 6 )