Tìm các cặp sô tự nhiên (x;y) thỏa mãn: \(x^6-x^4+2x^3+2x^2=y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1246 * X < 4972
=> x< 4972:1246
=> x < 3,99...
=> x< 4
=> x\(\in\left\{0;1;2;3\right\}\)
Số lớn nhất có các chữ số khác nhau thì số đó có nhiều chữ số khác nhau
42=1x2x3x7
Vậy số lớn nhất được viết bởi các chữ số khác nhau có tích bằng 42 là 7321
2x2y - x2 -2y - 2 = 0
=>2x2y-x2-2y+1 = 3
=>(2x2y-x2)-(2y-1)=3
=>x2(2y-1)-(2y-1)=3
=>(x2-1)(2y-1)=3
=>x2-1 và 2y-1 thuộc Ư(3)={3;1;-1;-3}
Xét x2-1=3 =>x2=4 =>x=±2 =>2y-1=1 =>y=1
Xét x2-1=1 =>x2=2 (Loại vì x,y nguyên)
Xét x2-1=-1 =>x2=0 =>x=0 =>2y-1=-3 =>y=-1
Xét x2-1=-3 =>x2=-2 (Loại vì bình phương 1 số luôn \(\ge\)0>-2)
Vậy với x=±2 thì y=1 với x=0 thì y=-1
⇔2x2−x+1=xy+2y⇔2x2−x+1=xy+2y
⇔2x2−x+1=y(x+2)⇔2x2−x+1=y(x+2)
⇔y=2x2−x+1x+2=2x−5+11x+2⇔y=2x2−x+1x+2=2x−5+11x+2
Do y nguyên ⇒11x+2⇒11x+2 nguyên ⇒x+2=Ư(11)⇒x+2=Ư(11)
Mà x nguyên dương ⇒x+2≥3⇒x+2=11⇒x=9⇒x+2≥3⇒x+2=11⇒x=9
⇒y=14⇒y=14
Vậy (x;y)=(9;14)
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
x6 - x4 + 2x3 + 2x2 = y2 (1)
<=> x4(x - 1)(x + 1) + 2x2(x + 1) = y2
<=> x2(x3 - x2 + 2)(x + 1) = y2
<=> x2(x + 1)[x3 + 1 - x2 + 1] = y2
<=> x2(x + 1)(x + 1)(x2 - x + 1 - x + 1) = y2
<=> x2(x + 1)2(x2 - 2x + 2) = y2
Do x;y thuộc N và y2 là số chính phương; x2(x + 1)2 là số chính phương
=> x2 - 2x+ 2 = k2 (k thuộc N)
<=> k2 - (x - 1)2 = 1
<=> (k - x + 1)(k + x - 1) = 1
Lập bảng:
1
Với x = 1 thay vào pt (1) => y2 = 16 - 14 + 2.13 + 2.12 = 4 => y = 2