Có ai biết hàm số bậc 2 \(ax^2+bx+c\)
Tại sao lại có \(x=-\frac{b}{2a}.............y=-\frac{\Delta}{4a}\) ko ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo phần Tìm tiêu điểm và Khi b thay đổi:
Parabol – Wikipedia tiếng Việt
Parabol – Wikipedia tiếng Việt
Dễ hiểu hơn thì:
\(y=ax^2+bx+c=a\left(x^2+\frac{b}{a}x\right)+c=a\left(x^2+2.\frac{b}{2a}x+\frac{b^2}{4a}-\frac{b^2}{4a}\right)+c\)
\(=a\left[\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a^2}\right]+c=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a}+c\)
\(=a\left(x+\frac{b}{2a}\right)^2+\frac{-\left(b^2-4ac\right)}{4a}=a\left(x+\frac{b}{2a}\right)+\frac{-\Delta}{4a}\)
Nhìn vào đây chắc bạn hiểu lý do tọa độ đỉnh parabol tại sao lại như vậy
Ta có : \(f\left(x\right)=ax^2+bx+c=a\left(x^2+\frac{bx}{a}\right)+c=a\left(x^2+2.x.\frac{b}{2a}+\frac{b^2}{4a^2}\right)-\frac{b^2}{4a}+c\)
\(=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a}\ge-\frac{b^2-4ac}{4a}\)(vì a>0)
Dấu đẳng thức xảy ra \(\Leftrightarrow x=-\frac{b}{2a}\)
Do đó : Min f(x) = \(\frac{4ac-b^2}{4a}\Leftrightarrow x=-\frac{b}{2a}\)
b) \(f\left(x\right)=-ax^2+bx+c=-a\left(x^2-bx\right)+c=-a\left(x^2-2.x.\frac{b}{2a}+\frac{b^2}{4a^2}\right)-\frac{b^2}{4a}+c=-a\left(x-\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}\le\frac{4ac-b^2}{4a}\)(vì a<0)
Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{b}{2a}\)
Vậy Max f(x) = \(\frac{4ac-b^2}{4a}\Leftrightarrow x=\frac{b}{2a}\)
vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)
ta tính y' có:
\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)
vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)
thay b=-3 vào (*) ta tìm được a=-2
vậy a=-2;b=-3
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Hàm số đạt min trên R <=> a > 0
ymin = 2 <=> \(\dfrac{-\Delta}{4a}=2\Leftrightarrow\dfrac{4ac-b^2}{4a}=2\Leftrightarrow b^2-4ac+8a=0\)
\(\Leftrightarrow b^2=4a.\left(c-2\right)\) (1)
Lại có (p) cắt (d) : y = -2x + 6 tại hoành độ là 2;10
=> Đi qua điểm A(2;2) ; B(10;-14)
hay ta có 2 = a.22 + b.2 + c
<=> 4a + 2b + c = 2
<=> c - 2 = -4a - 2b (2)
Tương tự : -14 = a.102 + b.10 + c
<=> 100a + 10b + c = -14 (3)
Thay (2) vào (1) ta được \(b^2=4a.\left(-4a-2b\right)\Leftrightarrow\left(b+4a\right)^2=0\Leftrightarrow b=-4a\)
Khi đó (3) <=> 60a + c = -14 (4)
(2) <=> c - 4a = 2 (5)
Từ (5) ; (4) => \(\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\c=1\end{matrix}\right.\)
\(b=-4a=\left(-4\right).\dfrac{-1}{4}=1\)
Vậy \(y=-\dfrac{1}{4}x^2+x+1\) (loại) do a > 0
=> Không có hàm số nào thỏa mãn
Từ điều kiện đề bài: (hiển nhiên a khác 0):
\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=-1\\a-b+c=7\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a-b^2=-4a\\a-b=6\\c=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-6\right)^2-8a=0\\b=a-6\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\left\{2;18\right\}\\b=a-6\\c=1\end{matrix}\right.\)
Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=2x^2-4x+1\\y=18x^2+12x+1\end{matrix}\right.\)
Với \(a\ne0\) từ đề bài ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\4a+2b+c=1\\16a+4b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a+b=0\\4a+2b+c=1\\16a+4b+c=-3\end{matrix}\right.\)
\(\Rightarrow a=-1;b=4;c=-3\)
Vậy (P): \(y=-x^2+4x-3\)