K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2020

Đặt 11...11 (n số 1) = t thì \(10^n=9t+1\)

S = 11...11 (2n số 1) - 88...88 (n số 8) + 1 = 11..11 (n số 1). 10n + 11...11 (n số 1) - 8t + 1 = t. (9t + 1) + t - 8t + 1 = 9t2 - 6t + 1 = (3t - 1)2 (là số chính phương)

Vậy S là số chính phương (đpcm)

AH
Akai Haruma
Giáo viên
29 tháng 6 2021

Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)

Ta có:

\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)

\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.

Ta có đpcm.

 

AH
Akai Haruma
Giáo viên
29 tháng 6 2021

Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)

Ta có:

\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)

\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)

\(=(3t+3)^2\) là scp.

Ta có đpcm.

\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)

\(S=\left(n+1\right)\times\left(2n+2\right):2\)

\(S=\left(n+1\right)\times\left(n+1\right)\)

\(S=\left(n+1\right)^2\)( dpcm )

30 tháng 5 2018

Xin lỗi đợi tao một lát nữa đi.

26 tháng 7 2020

Đặt \(\overline{111......1}=a\left(n-chu-so-1\right)\) Khi đó \(10^n=9a+1\)

\(D=\overline{1111.....1}-\overline{8888.....8}+1\)

\(=a\cdot10^n+8a+1=a\left(9a+1\right)+a-8a+1=9a^2-6a+1\)

\(=\left(3a-1\right)^2=\left(33333.....33\right)^2\left(n-chu-so-3\right)\)

Vậy ta có đpcm