Câu 1 : Cho △ABC có AC = 16cm. Gọi M,N lần lượt là trung điểm của cạnh AB và BC. Tính độ dài đoạn thẳng MN?
Câu 2 : Cho △ABC vuông tại A. Gọi M là trung điểm của BC. Từ M vẽ ME ⊥ AB tại E ; MF ⊥ AC tại F. Hỏi tứ giác AEMF là hình gì? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Gọi G là giao điểm của AH và DE
Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)
Suy ra tam giác GHD cân tại G
Suy ra tam giác NCE cân tại N ⇒ NC = NE (16)
Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật
MK vẽ hình ko chính xac lam bn thông cảm hen!!!
a) Xét ΔABC,có: AB2 + AC2 = 162 + 122 = 400
BC2 = 202 = 400
Do đó AB2 + AC2 = BC2
Theo ĐL Pytago đảo, ΔABC vuông tại A
b) Do AB vuông góc AC
MF vuông góc AC
Nên MF // AB
Xét ΔABC có: MB=MC(gt)
MF// AB(cm trên)
Suy ra MF là đường TB của ΔABC
=> F là trung điểm AC
Vậy FA=FC(đpcm)
c) Xét ΔABC có : MB = MC(gt)
MA = ME (gt)
Nên ME là đường TB của ΔABC
=> ME // AC ; ME =\(\frac{1}{2}\)AC
Mà AC vuông góc AB (cm trên)
Vậy ME vuông góc với AB
Do AC= 12 cm (gt)
Nên ME = 1/2 AC = 12/2= 6cm
Vậy ME= 6cm.
Câu 1:
Vì M,N là trung điểm AB,BC nên MN là đtb tg ABC
Do đó \(MN=\dfrac{1}{2}AC=8\left(cm\right)\)
Câu 2:
Vì \(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\) nên AEMF là hcn