•Chứng minh rằng n^3 - n chia hết cho 6 với mọi nguyên n•
Làm giúp mọi nhé :3 thank😊
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^3-n=n(n^2-1)=n(n-1)(n+1)
ta thay n-1;n;n+1 la 3 STN lien tiep
ma h cua 3 STN lien tiep luon chia het cho 2 va
Vay...
good luck
Ta có
mn(m^2 - n^2)
= mn[ (m^2 - 1) - (n^2 - 1) ]
= m(m^2 - 1)n - mn(n^2 - 1)
= (m - 1)m(m + 1)n - m(n - 1)n(n + 1)
Vì (m - 1)m(m + 1) là tích của 3 số nguyên liên tiếp nên nó chia hết cho 2 và 3.
Mà (2 , 3) = 1 => (m - 1)m(m + 1) chia hết cho 6
=> (m - 1)m(m + 1)n chia hết cho 6.
Chứng minh tương tự ta được m(n - 1)n(n + 1) chia hết cho 6 => (m - 1)m(m + 1)n - m(n - 1)n(n + 1) chia hết cho 6
Do đó m.n(m2 - n2 ) chia hết cho 6
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
\(A=n^3-n\\ =n\left(n^2-1\right)\\ =n\left(n-1\right)\left(n+1\right)\)
n; n-1; n+1 là 3 số tự nhiên liên tiếp (1)
=> 1 trong 3 số trên chia hết cho 2
=> A chia hết cho 2 (2)
Từ (1) => một trong 3 số trên chia hết cho 3
=> A chia hết cho 3 (3)
2 và 3 là 2 số nguyên tố cùng nhau (4)
Từ (2); (3); (4) => A chia hết cho 6 (đpcm)
n3 - n
= n(n2 - 1) = n(n2 - 12)
= n(n - 1)(n + 1)
Có n - 1 ; n ; n + 1 là 3 số nguyên liên tiếp (n thuộc Z)
=> trong 3 số đó luôn có ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3
=> Tích của chúng chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6
=> n3 - n chia hết cho 6 (Đpcm)
n3 - 13n
= n3 - n - 12n
= n(n2 - 1) - 12n
= n(n - 1)(n + 1) - 12n
n(n - 1)(n + 1) chia hết cho 6 (tích của 3 số nguyên liên tiếp)
- 12n chia hết cho 6
Vậy n3 - 13n chia hết cho 6 (đpcm)
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=5.\left(-n\right)\)chia hết cho 5.
Tham khảo
https://olm.vn/hoi-dap/tim-kiem?id=638956&subject=1&q=++++++++++CMR+(n4-1)+chia+het+cho+8,+v%E1%BB%9Bi+m%E1%BB%8Di+n+l%E1%BA%BB+b%E1%BA%A5t+k%C3%AC+++++++++