K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

Ta có: \(\sqrt{18}-\frac{1}{3}\sqrt{72}-\sqrt{8}+\frac{2-3\sqrt{2}}{3-\sqrt{2}}\)

\(=3\sqrt{2}-\frac{6\sqrt{2}}{3}-2\sqrt{2}+\frac{\left(3+\sqrt{2}\right)\left(2-3\sqrt{2}\right)}{9-2}\)

\(=3\sqrt{2}-2\sqrt{2}-2\sqrt{2}-\sqrt{2}\)

\(=-2\sqrt{2}\)

11 tháng 9 2016

\(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(2\sqrt{6}+1\right)}{23}\)

12 tháng 9 2016

cảm ơn bạn alibaba nguyễn

f: \(\dfrac{2}{\sqrt{6}-\sqrt{5}}=2\sqrt{6}+2\sqrt{5}\)

l: \(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\sqrt{10}-\sqrt{7}\)

3 tháng 7 2020

\(\frac{5}{2+\sqrt{3}}=\frac{5\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\frac{5\left(2-\sqrt{3}\right)}{4-3}=5\left(2-\sqrt{3}\right)\)

3 tháng 7 2020

\(\frac{5}{\sqrt{5}}=\frac{5\sqrt{5}}{\sqrt{5}.\sqrt{5}}\frac{5\sqrt{5}}{5}=\sqrt{5}\)

a: \(\dfrac{5}{\sqrt{10}}=\dfrac{5\sqrt{10}}{10}=\dfrac{\sqrt{10}}{2}\)

b: \(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

c: \(\dfrac{1}{3\sqrt{20}}=\dfrac{\sqrt{5}}{30}\)

a)\(\dfrac{5}{\sqrt{10}}=\dfrac{5\sqrt{10}}{10}=\dfrac{\sqrt{10}}{2}\)

b)\(\dfrac{5}{2\sqrt{5}}=\dfrac{5\sqrt{5}}{2.5}=\dfrac{\sqrt{5}}{2}\)

c)\(\dfrac{1}{3\sqrt{20}}=\dfrac{\sqrt{20}}{3.20}=\dfrac{\sqrt{20}}{60}=\dfrac{\sqrt{5}}{30}\)

f: \(\dfrac{2}{\sqrt{6}-\sqrt{5}}=2\sqrt{6}+2\sqrt{5}\)

l: \(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\sqrt{10}-\sqrt{7}\)

m: \(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)

 

15 tháng 9 2018

\(=\frac{\left(\sqrt{x}-\sqrt{4y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right).\left(\sqrt{x}-\sqrt{y}\right)}+\frac{3x.\left(x-\sqrt{xy}\right)}{\left(x+\sqrt{xy}\right).\left(x-\sqrt{xy}\right)}\)

\(=\frac{\left(\sqrt{x}-2.\sqrt{y}\right).\left(\sqrt{x}-\sqrt{y}\right)}{x-y}+\frac{3x.\sqrt{x}.\left(\sqrt{x}-\sqrt{y}\right)}{x^2-xy}\)

\(=\frac{\left(\sqrt{x}-2.\sqrt{y}\right).\left(\sqrt{x}-\sqrt{y}\right)}{x-y}+\frac{3x\sqrt{x}.\left(\sqrt{x}-\sqrt{y}\right)}{x.\left(x-y\right)}\)

\(=\frac{\left(\sqrt{x}-2.\sqrt{y}\right).\left(\sqrt{x}-\sqrt{y}\right)}{x-y}+\frac{3\sqrt{x}.\left(\sqrt{x}-\sqrt{y}\right)}{x-y}\)

\(=\frac{\left(\sqrt{x}-2.\sqrt{y}\right).\left(\sqrt{x}-\sqrt{y}\right)+3.\sqrt{x}.\left(\sqrt{x}-\sqrt{y}\right)}{x-y}\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}-2.\sqrt{y}+3.\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=1\)

19 tháng 6 2019

a) \(\frac{9}{\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}\)

b) \(\frac{3}{\sqrt{5}-\sqrt{2}}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}=\sqrt{5}+\sqrt{2}\)

c) \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{5-2\sqrt{15}+3}{5-3}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)

d) \(\frac{1}{\sqrt{18}+\sqrt{8}-2\sqrt{2}}=\frac{1}{3\sqrt{2}+2\sqrt{2}-2\sqrt{2}}=\frac{1}{3\sqrt{2}}=\frac{\sqrt{2}}{3\sqrt{2}\cdot\sqrt{2}}=\frac{\sqrt{2}}{6}\)