cho tam giác vgABC( góc A=90 độ) biết \(\frac{AB}{AC}=\frac{5}{6}\) đường cao AH=30cm
a) tính các cạnh và các góc của tam giác ABC
b) tính HB,HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
a,theo định lý pytago đảo tính dc A=90
các góc còn lại tính bằng máy tính nha bạn.bạn lấy máy tính bấm \(sin^{-1}\)(cạnh đối/cạnh huyền) là ra góc cần tính nha bạn
b,ah vuông góc bc mà tam giác abc vuông tại a nên
\(AB^2=BH.BC\Rightarrow100=BH.26\Rightarrow BH=\dfrac{50}{13}\)
\(\Rightarrow CH=BC-BH=\dfrac{288}{13}\)
\(\Rightarrow AH^2=BH.CH=\dfrac{14400}{169}\Rightarrow AH=\dfrac{120}{13}\)
tick mik nha bn
B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC
AH2=HB x HC =3x4=12
AH=căn 12 r tính mấy cạnh kia đi
B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4
Thế vào cong thức Pytago Tam giác ABC tính máy cái kia
3:
Đặt HB=x; HC=y
Theo đề, ta có: x+y=289 và xy=120^2=14400
=>x,y là các nghiệm của phương trình:
a^2-289a+14400=0
=>a=225 hoặc a=64
=>(x,y)=(225;64) và (x,y)=(64;225)
TH1: BH=225cm; CH=64cm
=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)
TH2: BH=64cm; CH=225cm
=>AB=119m; AC=255cm
ban tu ve hinh nha
ta co \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)
\(\Rightarrow AB=9,AC=12\)
ap dung dl pitago vao tam giac ABC vuong tai A
\(AB^2+AC^2=BC^2\Rightarrow BC=15\)
B. ap dung he thuc luong trong tam gia vuong ABC co
\(AH\cdot BC=AC\cdot AB\Rightarrow AH=\frac{12\cdot9}{15}=7,2\)
\(AB^2=BH\cdot CB\Rightarrow BH=\frac{9^2}{15}=5.4\)\(\Rightarrow CH=BC-BH=15-5,4=9.6\)
Xét \(\Delta ABH\)và \(\Delta CAH\)có
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với góc HAC)
suy ra: \(\Delta ABH~\Delta CAH\) (g.g)
suy ra: \(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)
hay \(\frac{5}{6}=\frac{30}{CH}=\frac{BH}{30}\)
suy ra: \(CH=\frac{6.30}{5}=36\)
\(BH=\frac{5.30}{6}=25\)
b) CM: \(\Delta ABH~\Delta CAH\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\)
\(\Rightarrow\frac{5}{6}=\frac{30}{CH}\Rightarrow CH=36cm\)
từ \(\Delta ABH~\Delta CAH\Rightarrow\frac{AH}{HC}=\frac{BH}{AH}\Rightarrow BH.HC=AH^2\)
\(\Rightarrow BH=\frac{AH^2}{CH}=\frac{30^2}{36}=25cm\)