K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2020

\(x^2+x+13=y^2\Leftrightarrow4x^2+4x+52=4y^2\)

\(\Leftrightarrow\left(2x+1\right)^2+51=\left(2y\right)^2\)

\(\Leftrightarrow\left(2y\right)^2-\left(2x+1\right)^2=51\)

\(\Leftrightarrow\left(2y+2x+1\right)\left(2y-2x-1\right)=51\)

\(\Leftrightarrow...\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+16x+18}=a\\\sqrt{x^2-1}=b\\2x+4=c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=c\\a^2+2b^2=c^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=c-a\\2b^2=\left(c-a\right)\left(c+a\right)\end{matrix}\right.\)

\(\Leftrightarrow2b^2=b\left(c+a\right)\Leftrightarrow b\left(c+a-2b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=0\Leftrightarrow x^2-1=0\Rightarrow x=...\\c+a=2b\left(1\right)\end{matrix}\right.\)

Kết hợp (1) với pt ban đầu ta được: \(\left\{{}\begin{matrix}b=c-a\\c+a=2b\end{matrix}\right.\)

\(\Rightarrow c+a=2\left(c-a\right)\Rightarrow c=3a\)

\(\Rightarrow3\sqrt{2x^2+16x+18}=2x+4\left(x\ge-2\right)\)

\(\Leftrightarrow9\left(2x^2+16x+18\right)=\left(2x+4\right)^2\)

\(\Leftrightarrow...\)

NV
7 tháng 10 2020

\(\left\{{}\begin{matrix}x^2+1=y\left(x+y\right)\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{matrix}\right.\)

\(\Rightarrow y\left(x+y\right)\left(x+y-2\right)+y=0\)

\(\Leftrightarrow y\left[\left(x+y\right)\left(x+y-2\right)+1\right]=0\)

\(\Leftrightarrow y\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]=0\)

\(\Leftrightarrow y\left(x+y-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\left(ktm\right)\\x+y-1=0\end{matrix}\right.\)

\(\Rightarrow y=1-x\)

Thế vào pt đầu:

\(x^2-\left(1-x\right)+1=0\Leftrightarrow...\)

17 tháng 2 2016

bài 1 , a= 2004! : 7 nha

bài 2:x =2

20 tháng 4 2017

1. a = 2004 

2. x = 2

Đúng 100%

Đúng 100%

Đúng 100%

\(a,\)Với \(x\ne-3,x\ne2\) ta có :

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}-\dfrac{1}{x-2}\)

   \(=\dfrac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)

   \(=\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

   \(=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

   \(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

  \(=\dfrac{x-4}{x-2}\)

\(b,\) \(A=-3\Leftrightarrow\dfrac{x-4}{x-2}=-3\)

\(\Leftrightarrow x-4=-3\left(x-2\right)\)

\(\Leftrightarrow x-4+3x-6=0\)

\(\Leftrightarrow4x=10\Rightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)

10 tháng 4 2021

 c ?

DD
25 tháng 1 2021

Ta có: \(x^2+1\ge2x\Rightarrow x^2-x+1\ge x\Rightarrow A=\frac{2x}{x^2-x+1}\le\frac{2x}{x}=2\).

\(A=2\Rightarrow x=1\).

\(A=1\Rightarrow x^2-3x+1=0\Leftrightarrow x=\frac{3\pm\sqrt{5}}{2}\)(không thỏa).

\(A=0\Rightarrow x=0\)

5 tháng 4 2022

`A=1=>x^2 -3x+1=0<=>x=[3+-\sqrt{5}]/2`

E hỏi `-3x` ở đâu ra vậy ạ

21 tháng 9 2021

Bài 2:

a) \(A=x^2+6\ge6>0\forall x\in R\)

b) \(B=\left(5-x\right)\left(x+8\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)

 

20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

28 tháng 10 2021

Bài 8:

\(F=x^2-2x+1+x^2-6x+9=2x^2-8x+10\\ F=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2\\ F_{min}=2\Leftrightarrow x=2\)

28 tháng 10 2021

Bài 9:

\(A=-x^2+2x-1+5=-\left(x-1\right)^2+5\le5\\ A_{max}=5\Leftrightarrow x=1\\ B=-x^2+10x-25+2=-\left(x-5\right)^2+2\le2\\ B_{max}=2\Leftrightarrow x=5\\ C=-x^2+6x-9+9=-\left(x-3\right)^2+9\le9\\ C_{max}=9\Leftrightarrow x=3\)