K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

Bài 4: Chứng minh các hằng đẳng thức sau

a. x2+y2=(x+ y)2- 2xy

biến đổi vế phải ta được:

(x+ y)2- 2xy

=x2+2xy+y2-2xy

=x2+y2 bằng vế phải

=> biểu thức đã được chứng minh

b. (a+b)2-(a-b)(a+b)= 2b(a+b)

biến đổi vế trái ta được:

(a+b)2-(a-b)(a+b)

=a2+2ab+b2-(a2-b2)

=a2+2ab+b2-a2+b2

=2ab+2b2

=2b(a+b)

12 tháng 3 2019

Rút gọn VT

=> VT = VP 

=> Đpcm

9 tháng 3 2018

a) VT = ( a + b + a − b ) ( a + b − a + b ) 4 = 2 a . 2 b 4 = 4 = VP => đpcm.

b) VP = x 2   +   2 xy   +   y 2   +   x 2   –   2 xy   +   y 2   =   2 ( x 2   +   y 2 ) = VT => đpcm.

4 tháng 9 2021

a) \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)

b) \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)=\left(a+b\right)^2-\left(a^2-b^2\right)=a^2+2ab+b^2-a^2+b^2\)

\(=2ab+2b^2=2b\left(a+b\right)\)

c)\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=2b.2a=4ab\) 

a: \(\left(x+y\right)^2-2xy\)

\(=x^2+2xy+y^2-2xy\)

\(=x^2+y^2\)

b: \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)\)

\(=\left(a+b\right)\left(a+b-a+b\right)\)

\(=2b\left(a+b\right)\)

c: \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=4ab\)