K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

1.\(=x^3+8y^3-x^3+8y^3+2y^3=18y^3\)

2. \(=x^3-3x^2+3x-1+1-x^3+3\left(9-x^2\right)\)

\(=-3x^2+3x+27-3x^2=3\left(x+9\right)\)

Ko chắc lém :))))

Sửa đề: \(x\left(x-3\right)+2y\left(2y-3\right)+4xy+19\)

a: \(x\left(x-3\right)+2y\left(2y-3\right)+4xy+19\)

\(=x^2-3x+4y^2-6y+4xy+19\)

\(=\left(x^2+4xy+4y^2\right)-3\left(x+2y\right)+19\)

\(=\left(x+2y\right)^2-3\left(x+2y\right)+19\)

\(=\left(-5\right)^2-3\cdot\left(-5\right)+19\)

=25+15+19=59

b: \(=x^3+x^2+8y^3+4y^2+2xy\left[3\left(x+2y\right)+2\right]+70\)

\(=x^3+8y^3+x^2+4y^2+2xy\cdot\left[3\cdot\left(-5\right)+2\right]+70\)

\(=\left(x+2y\right)^3-3\cdot x\cdot2y\left(x+2y\right)+\left(x+2y\right)^2-4xy+2xy\cdot\left(-13\right)+70\)

\(=\left(-5\right)^3+\left(-5\right)^2-6xy\cdot\left(-5\right)-4xy-26xy\)+70

\(=-125+25+70=-30\)

1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)4/ Cho x,y là nghiệm của hệ phương trình\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)Tìm min và max của A=xy5/cho x,y,z thỏa mãn...
Đọc tiếp

1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)

2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)

3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)

4/ Cho x,y là nghiệm của hệ phương trình

\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)

Tìm min và max của A=xy

5/cho x,y,z thỏa mãn đk

\(\left\{{}\begin{matrix}xy+yz+xz=1\\x^2+y^2+z^2=2\end{matrix}\right.\)

Chứng minh rằng: \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)

6/Ghpt bằng 3 cách\(\left\{{}\begin{matrix}x+y+z=1\\\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)

7/Ghpt\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)

8/Ghpt\(\left\{{}\begin{matrix}x^2-3y=-2\\y^2-3x=-2\end{matrix}\right.\)

9/Ghpt bằng 2 cách\(\left\{{}\begin{matrix}x+\sqrt{y+3}=3\\y+\sqrt{x+3}=3\end{matrix}\right.\)

10/Ghpt\(\left\{{}\begin{matrix}x+\dfrac{2}{y}=\dfrac{3}{x}\\y+\dfrac{2}{x}=\dfrac{3}{y}\end{matrix}\right.\)

11/Ghpt\(\left\{{}\begin{matrix}\sqrt[3]{3x+5}=y+1\\\sqrt[3]{3y+5}=x+1\end{matrix}\right.\)

12/Ghpt\(\left\{{}\begin{matrix}3x^2y-y^2-2=0\\3y^2x-x^2-2=0\end{matrix}\right.\)

13/Giải các phương trình sau bằng cách đứa về hệ pt đối xứng loại II:

a)\(\left(x^2-3\right)^2-x-3=0\)

b)\(x^2-2=\sqrt{x+2}\)

14/Ghpt:\(\left\{{}\begin{matrix}x^2+y^2+xy=3\\x^2-y^2+xy=1\end{matrix}\right.\)

2
16 tháng 6 2023

loading...  

16 tháng 6 2023

loading...  

29 tháng 3 2019

Điều kiện: $\left\{\begin{matrix} 2y(x+1)\geq 0\\x\geq -3 \\y\geq 1 \\ x^2+x+2y-4\geq 0 \end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ y\geq 1\\x^2+x+2y-4\geq 0 \end{matrix}\right.$

$(1)\Leftrightarrow 2(x+3y+1)\sqrt{2xy+2y}=6xy+8y^2+6y$

$\Leftrightarrow [(x+3y+1)-\sqrt{2xy+2y}]^2-(x+y+1)^2=0$

$\Leftrightarrow (x+3y+1-\sqrt{2xy+2y}-x-y-1)(x+3y+1-\sqrt{2xy+2y}+x+y+1)=0$

$\Leftrightarrow \begin{bmatrix} 2y=\sqrt{2xy+2y} (A)\\ 2x+4y+2=\sqrt{2xy+2y} (B) \end{bmatrix}$

+) iải (A):
(A)<=> $4y^2=2xy+2y$

<=> $\begin{bmatrix} y=0 (loại vì y \geq 1)\\ 2y=x+1 \end{bmatrix}$

thế $2y=x+1$ vào (2) => nhân liên hợp 2 căn được pt: $x-3+\sqrt{x^2+2x-3}=\sqrt{x+3}+\sqrt{x-1}$ => bình phương => rút gọn được pt sau:
$(\sqrt{x^2+2x-3}+x-4)^2=9$ => giải được 2 nghiệm
+) giải (B):

(B) <=> $(\sqrt{2y}-\sqrt{x-1})^2+3(x+2y+1)=0$

Vì $\left\{\begin{matrix} x\geq -1\\ y\geq 1 \end{matrix}\right.$ => pt vô nghiệm

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)

\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)

\(=2x^2-4xy+\dfrac{15}{4}y^2\)

b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)

\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)

\(=2x^2+2x+13-2x^2+2\)

=2x+15

2 tháng 10 2021

a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)

b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)

\(=2x+15\)

26 tháng 12 2021

c: \(=x^2+6xy+9y^2\)

e: \(=x^4-4y^2\)