K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

\(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}}-\sqrt{12+2\sqrt{11}}\right)\left(\sqrt{11}+\sqrt{13}\right)\)

\(=\left(\sqrt{12+2\sqrt{\left(\sqrt{13+1}\right)^2}}-\sqrt{\left(\sqrt{11+1}\right)^2}\right)\left(\sqrt{11}+\sqrt{13}\right)\)

\(=\left(\sqrt{12+2\sqrt{13+2}}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)

\(=\left(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)

\(=\left(\sqrt{13}+1-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)\(=\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{11}+\sqrt{13}\right)=13-11=2\)

6 tháng 10 2020

sao dấu= thứ 2 lại ra như vậy

22 tháng 6 2017

C = \(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}}-\sqrt{12+2\sqrt{11}}\right)\left(\sqrt{11}+\sqrt{13}\right)\)

C = \(\left(\sqrt{12+2\sqrt{\left(\sqrt{13}+1\right)^2}}-\sqrt{\left(\sqrt{11}+1\right)^2}\right)\left(\sqrt{11}+\sqrt{13}\right)\)

C = \(\left(\sqrt{14+2\sqrt{13}}-\left(\sqrt{11}+1\right)\right)\left(\sqrt{11}+\sqrt{13}\right)\)

C = \(\left(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)

C = \(\left(\sqrt{13}+1-\sqrt{11}-1\right)\left(\sqrt{13}+\sqrt{11}\right)\)

C \(\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)\) = \(13-11\) = \(2\)

a: Ta có: \(\sqrt{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)

b: Ta có: \(\left(3-\sqrt{2}\right)\cdot\sqrt{11+6\sqrt{2}}\)

\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)

=9-2

=7

c: Ta có: \(\left(\sqrt{7}+\sqrt{5}\right)\cdot\sqrt{12-2\sqrt{35}}\)

\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=2

11 tháng 7 2021

a) \(A=\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\)

\(=\sqrt{5}-2+2\sqrt{2}-\sqrt{5}=2\sqrt{2}-2\)

b) \(B=\left|\sqrt{7}-2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\)

\(=2\sqrt{2}-7+3-2\sqrt{2}=-4\)

c) \(C=\sqrt{9+6\sqrt{2}+2}-\sqrt{9-6\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left(3+\sqrt{2}\right)-\left(3-\sqrt{2}\right)=2\sqrt{2}\)

d) \(D=\sqrt{9+12\sqrt{2}+8}+\sqrt{9-12\sqrt{2}+8}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}=\left(3+2\sqrt{2}\right)-\left(3-2\sqrt{2}\right)=4\sqrt{2}\)

Rút gọn biểu thức: 1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\) 2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\) 3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\) 4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\) 5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\) 6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\) 7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\) 8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\) 9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\) 10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\) 11)...
Đọc tiếp

Rút gọn biểu thức:

1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\)

2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)

3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)

4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)

5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)

7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\)

9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\)

10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\)

11) \(\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}\)

12) \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)

13) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

14) \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)

15) \(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{120}\)

16) \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)

17) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)

18) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

19) \(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

20) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)

4
3 tháng 1 2019

1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)

2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)

3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2} \)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)

4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)

5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)

7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)

8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2


4 tháng 1 2019
https://i.imgur.com/pmexRQv.jpg

a: \(=6-\sqrt{15}+2\sqrt{15}=6+\sqrt{15}\)

b: \(=\left(\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)

\(=7-2\sqrt{21}+2\sqrt{21}=7\)

c: \(=10+5\sqrt{10}-5\sqrt{10}=10\)

d: \(=22-\sqrt{198}+\sqrt{198}=22\)

b: \(=\sqrt{5}-1-\sqrt{5}-1=-2\)

c: \(=\dfrac{\left(2\sqrt{2}+\sqrt{3}-2\sqrt{2}+\sqrt{3}\right)}{2\sqrt{3}}=1\)

d: \(=\dfrac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=-\sqrt{2}\)