CMR: Nếu p;q là 2 số nguyên tố thỏa mãn \(p^2-q^2=p-3q+2\) thì \(p^2+q^2\) cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu C thuộc tia đối tia BA thì BA và BC là 2 tia đối nhau
=> B nằm giữa A và C
=> AB + BC = AC
Vì M là trung điểm của AB
=> M nằm giữa A và B ; MA=MB
Vì M nằm giữa A và B
=> MA+MB = AB
Vì B nằm giữa A và C
=> BA và BC là 2 tia đối nhau
Mà M thuộc tia BA
=> BM và BC là 2 tia đối nhau
=> B nằm giữa M và C
=> MB + BC = MC
Hay AB + BC + BC = MC
AB + 2 . BC = MC
\(\frac{2\left(AB+2BC\right)}{2}=MC\)
\(\frac{\left(CA+CB\right)}{2}=MC\)
Vậy.....
a, ta có:
CA=AM cộng CM vì M nằm giữa A và C
CB=CM-BM vì B nằm giữa C và M
thế 2 cái này vào biểu thức: (CA cộng CB)/2
ta có
(CM cộng AM cộng CM - BM)/2
mà AM=BM (Vì M là trung điểm của AB)
Nên biểu thức còn lại là
(CM cộng CM)/2
= (2CM)/2 =CM.
b, tương tự (mình sẽ nói ngắn gọn hơn)
ta có
CA=CM cộng AM
CB=BM-MC
nên (CA-CB)/2 = [CM cộng AM -(BM-CM)]/2
=2CM/2 = CM