K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

a: \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

28 tháng 10 2021

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-1}{1}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

22 tháng 12 2020

Bài 1: 

a) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b) Để Q dương thì \(\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)

mà \(3\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ

nên \(\sqrt{a}-2>0\)

\(\Leftrightarrow\sqrt{a}>2\)

hay a>4

Kết hợp ĐKXĐ,ta được: a>4

Vậy: Để Q dương thì a>4

13 tháng 11 2021

Câu b bạn sửa lại đề

\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)

13 tháng 11 2021

a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

a) Vì khi a>0 và \(a\notin\left\{4;1\right\}\) thì \(\left\{{}\begin{matrix}\sqrt{a}-1\ne0\\\sqrt{a}\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\)

nên Q xác định

b) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

Để Q dương thì \(\sqrt{a}-2>0\)

\(\Leftrightarrow a>4\)

Kết hợp ĐKXĐ, ta được: a>4

 

4 tháng 7 2023

a, \(VT=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=a-b=VP\) đpcm

b,\(VT=1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}-\dfrac{a^2-a}{a-1}=1-\sqrt{a}+\sqrt{a}-a=1-a=VP\) đpcm

4 tháng 7 2023

loading...  

15 tháng 7 2021

a) \(\dfrac{\left(2+\sqrt{a}\right)^2-\left(\sqrt{a}+1\right)^2}{2\sqrt{a}+3}=\dfrac{\left(2+\sqrt{a}-\sqrt{a}-1\right)\left(2+\sqrt{a}+\sqrt{a}+1\right)}{2\sqrt{a}+3}\)

\(=\dfrac{1.\left(2\sqrt{a}+3\right)}{2\sqrt{a}+3}=1\)

b) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right):\left(1+\sqrt{a}\right)^2\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right).\dfrac{1}{\left(1+\sqrt{a}\right)^2}\)

\(=\left(a+\sqrt{a}+1+\sqrt{a}\right).\dfrac{1}{\left(\sqrt{a}+1\right)^2}=\left(a+2\sqrt{a}+1\right).\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)

\(=\left(\sqrt{a}+1\right)^2.\dfrac{1}{\left(\sqrt{a}+1\right)^2}=1\)

15 tháng 7 2021

a, \(VT=\dfrac{\left(2+\sqrt{a}\right)^2-\left(\sqrt{a}+1\right)^2}{2\sqrt{a}+3}=\dfrac{a+4\sqrt{a}+4-a-2\sqrt{a}-1}{2\sqrt{a}+3}\)

\(=\dfrac{2\sqrt{a}+3}{2\sqrt{a}+3}=1=VP\)

Vậy ta có đpcm 

b, \(VT=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right):\left(1+\sqrt{a}\right)^2\)

\(=\left(1+\sqrt{a}+a+\sqrt{a}\right):\left(1+\sqrt{a}\right)^2=\dfrac{\left(1+\sqrt{a}\right)^2}{\left(1+\sqrt{a}\right)^2}=1=VP\)

Vậy ta có đpcm 

19 tháng 11 2021

\(a,VT=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x-1}\\ =\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{\left(x+1\right)\left(1-3x\right)}{3x}\right)\cdot\dfrac{x}{x-1}\\ =\left(\dfrac{2}{3x}-\dfrac{2-6x}{3x}\right)\cdot\dfrac{x}{x-1}=\dfrac{6x}{3x}\cdot\dfrac{x}{x-1}=\dfrac{2}{x-1}=VP\left(x\ne0;x\ne1\right)\)

\(b,VT=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}=VP\left(a\ge0;a\ne1\right)\)

19 tháng 11 2021

anh Minh đâu r hả cj?