\(Cm:\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2n-1}{2n}< \frac{2}{\sqrt{2n+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi n=1, ta được \(\frac{1}{2}< \frac{1}{\sqrt{2.1+1}}\Leftrightarrow\frac{1}{2}< \frac{1}{\sqrt{3}}\) : đúng
giả sử mệnh đề đúng khi n=k\(\left(k\ge1\right)\), tức là \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2k-1}{2k}< \frac{1}{\sqrt{2k+1}}\)
Bây giờ ta chứng minh mệnh đề cũng đúng khi n=k+1, tức là ta phải chứng minh BĐT sau:
\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2k-1}{2k}.\frac{2k+1}{2\left(k+1\right)}< \frac{1}{\sqrt{2k+3}}\)
Thật vậy, theo giả thiết quy nạp \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2k-1}{2k}< \frac{1}{\sqrt{2k+1}}\)
\(\Leftrightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2k-1}{2k}.\frac{2k+1}{2\cdot\left(k-1\right)}< \frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2\left(k+1\right)}\)
Ta cần chứng minh \(\frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2\left(k+1\right)}< \frac{1}{\sqrt{2k+3}}\Leftrightarrow\frac{1}{\left(2k+1\right)}.\frac{\left(2k+1\right)^2}{4\left(k+1\right)^2}< \frac{1}{\left(2k+3\right)}\)
\(\Leftrightarrow\left(2k+1\right)^2\left(2k+3\right)< 4\left(k+1\right)^2\left(2k+1\right)\Leftrightarrow0< 2k+1\): luôn đúng
=>mệnh đề đúng với n=k+1
Vậy theo phương pháp quy nạp toán học \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với mọi n nguyên dương.
a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)
b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))
= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )
= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)
= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)
= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)
= lim \(-3n=-\infty\)
c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)
Lời giải:
Bài toán cần bổ sung điều kiện $n\in\mathbb{N}>1$
Quy nạp.
Với $n=2,3$ thì bài toán hiển nhiên đúng
.....
Giả sử bài toán đúng đến $n$. Tức là:
$A_n=\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{1}{\sqrt{3n+1}}$
Ta cần chứng minh nó cũng đúng với $n+1$, tức là $A_{n+1}< \frac{1}{\sqrt{3n+4}}$
Thật vậy:
$A_{n+1}=A_n.\frac{2n+1}{2n+2}< \frac{1}{\sqrt{3n+1}}.\frac{2n+1}{2n+2}$
Giờ chỉ cần CM: $\frac{1}{\sqrt{3n+1}}.\frac{2n+1}{2n+2}< \frac{1}{\sqrt{3n+4}}$
$\Leftrightarrow (2n+1)^2(3n+4)< (2n+2)^2(3n+1)$
$\Leftrightarrow -n< 0$ (luôn đúng)
Vậy phép quy nạp hoàn thành. Ta có đpcm.
Trước hết ta chứng minh BĐT
\(\frac{2k-1}{2k}< \frac{\sqrt{3k-2}}{\sqrt{3k+1}}\left(1\right)\)
Thật vậy, (1) \(\Leftrightarrow\left(2k-1\right)\sqrt{3k+1}< 2k\sqrt{3k-2}\)\(\Leftrightarrow\left(4k^2-4k+1\right)\left(3k+1\right)< 4k^2\left(3k-2\right)\)
\(\Leftrightarrow12k^3-8k^2-k+1< 12k^3-8k^2\)\(\Leftrightarrow k-1>0\left(\forall k\ge2\right)\)
Trong (1), lần lượt thay k bằng 1,2,...,n ta được:
\(\frac{1}{2}\le\frac{\sqrt{1}}{\sqrt{4}},\frac{3}{4}\le\frac{\sqrt{4}}{\sqrt{7}},....,\frac{2n-1}{2n}< \frac{\sqrt{3n-2}}{\sqrt{3n+1}}\)
Nhân từng vế các BĐT trên ta có:
\(\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{\sqrt{1}}{\sqrt{4}}.\frac{\sqrt{4}}{\sqrt{7}}...\frac{\sqrt{3n-2}}{\sqrt{3n+1}}=\frac{1}{\sqrt{3n+1}}\)