Cho hình chữ nhật ABCD . Kẻ BP vuông góc với AC . Gọi M , N lần lượt là trung điểm của AP và CD . Kẻ CQ vuông góc với BM ở Q và cắt BP ở E .
a. Chứng minh ME vuông góc BC .
b. Tứ giác MNCE là hình gì?Vì sao?
c. Chứng minh BM vuông góc với MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆MBC có hai đường cao BP và CQ cắt nhau tại E nên E là trực tâm của tam giác => ME là đường cao thứ ba => ME⊥BC (đpcm)
b) ABCD là hình chữ nhật (1) nên AB⊥BC kết hợp với ME⊥BC => ME // AB (2) mà M là trung điểm của AP nên E là trung điểm của BP => ME là đường trung bình của ∆APB => ME = 1/2AB và NC = 1/2CD (gt) nên ME = NC (do AB = CD)
Từ (1) và (2) suy ra ME//NC
Tứ giác MNCE có ME = NC và ME//NC nên là hình bình hành
c) Tứ giác MNCE là hình bình hành nên ^NMC = ^MCE
Mà ^MCE + ^CMQ = 900 (∆MCQ vuông tại Q) nên ^NMC + ^CMQ = 900 => NMQ = 900 => BM vuông góc với MN (đpcm)
Cho hình chữ nhật ABCD. Kẻ BP vuông góc AC ở P.Gọi M và N là trung điểm AP và CD. Kẻ CQ vuông góc BM ở Q và cắt BP ở E ' 1, Tứ Giác MNCE là hình gì? 2 CM: Bm vuông góc MN
a, Xét tam giác BMC có CE vuông góc với BM , BE vuông góc với CM
=> E là trực tâm của tam giác BMC
=> ME vuông góc với BC mà AB vuông góc với BC
=> ME song song với AB
Xét tam giác BMC có AM=MP , ME song song vói AB
=> BE = PE => ME là đg trung bình của tam giác BMC
=> ME song song và bằng 1/2 AB mặt khác CN= 1/2 CD mà CD song song và bằng AB
=> NC song song và bằng ME=> MECN là hbh
b, Vì CE vuông góc với BM mà MN song song với CE
=> MN vuông góc với BM