K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2020

Đặt A = 1.4 + 2.5 + 3.6 + ... + 100.103

= 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) +.... + 100.(101 + 2)

= 1.2 + 2.3 + 3.4 + ... + 100.101 + (1.2 + 2.2 + 3.2 + ... + 100.2)

= 1.2 + 2.3 + 3.4 + ... + 100.101 + 2(1 + 2 + 3 + .... + 100)

= 1.2 + 2.3 + 3.4 + .... + 100.101 + 2.100.(100 + 1) : 2

= 1.2 + 2.3 + 3.4 + ... + 100.101 + 10100

Đặt B = 1.2 + 2.3 + 3.4 + .... + 100.101

=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + .... + 100.101.3

=> 3B = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)

=> 3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 100.101.102 - 99.100.101

=> 3B = 100.101.102

=> B = 343400

Khi đó A = 343400 - 10100 = 333300

28 tháng 9 2020

bạn tính kiểu khác đc ko ? kiểu ab mình ko hiểu lắm

24 tháng 2 2023

Đặt \(A=1.4+2.5+3.6+...+100.103\)

\(=1\left(2.2\right)+2\left(3+2\right)+3\left(4+2\right)+...+100\left(101+2\right)\)

\(=1.2+2.3+3.4+...+100.101+\left(1.2+2.2+3.2+...+100.2\right)\)

\(=1.2+2.3+3.4+...+100.101+2\left(1+2+3+...+100\right)\)

\(=1.2+2.3+3.4+...+100.101+2.100\left(100+1\right):2\)

\(=1.2+2.3+3.4+...+100.101+10100\)

Đặt \(B=1.2+2.3+3.4+...+100.101\)

\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+100.101.3\)

\(\Rightarrow3B=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\)

\(\Rightarrow3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\)

\(\Rightarrow3B=100.101.102\)

\(\Rightarrow B=343400\)

Khi đó \(A=343400=10100=333300\)

24 tháng 2 2023

Đặt A = 1.4 + 2.5 + 3.6 + 4.7 + ... + 100.103

3A = 3.(1.2 + 2.3 + 3.4 + ... + 100.101] + 3.(2 + 4 + 6 + ... + 200)

     = 1.2.3 + 2.3.3 + 3.4.3 + ... + 100.101.3 + 3.(2 + 4 + 6 + ... + 200)

\(\Rightarrow\) A  =  100.101.105:3 = 353500

9 tháng 10 2017

D =1.4+2.5+3.6+.......+99.102

D = 1. (2+2) +2.(2+3) +3.(2+4)+...+99.(100+2)

D = 1.2+1.2+2.2+2.3+2.3+3.4+...+2.99+99.100

D = (1.2+2.3+3.4+...+99.100) +2.(1+2+3+4+...+99)

*Gọi A= 1.2+2.3+3.4+...+99.100

3A = 3.(1.2+2.3+3.4+...+99.100)

3A = 1.2.3+2.3.3+...+99.100.3

3A = 1.2.3 +2 .3.(4-1)+...+99.100.(101-98)

3A = 1.2.3+2.3.4-1.2.3+...+ 99.100.101-98.99.100

3A = 99.100.101

3A = 3.33.100.101

A   =  33.100.101

A   = 333300

* Gọi B = 2. (1+2+3+4+...+99) 

                  \__có 99 số hạng ___/          

 B=  2.[(1+99).99:2]

 B = 2 .4950

 B = 9900

A+B = 333300+9900 =343200

Vậy D =343200