Cho hình vuông ABCD có hai đường chéo cắt nhau tại E. Một đường thắng qua A, cắt cạnh BC tại M và cắt đường thẳng CD tại N. Gọi K là giao điểm của hai đường thẳng EM và BN. Chứng minh rằng: a) AB^2 = BD. BE b) Tam giác BEM đồng dạng với tam giác DNB c) KM là phân giác của góc BKC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
31 tháng 8 2019
a) Ta có:
+) M là trung điểm của AD và MN // CD
MN là đường trung bình của hình thang ABCD
N là trung điểm của BC
+) M là trung điểm của AB và ME // AB
ME là đường trung...
28 tháng 9 2019
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
CM
1 tháng 1 2017
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành