K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

a) \(A=\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot13}+...+\frac{3}{647\cdot650}\)

\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{647}-\frac{1}{650}=\frac{1}{5}-\frac{1}{650}=\frac{129}{650}\)

b) \(B=\frac{12}{3\cdot7}+\frac{12}{7\cdot11}+...+\frac{12}{196\cdot200}=3\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{196\cdot200}\right)\)

\(=3\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{196}-\frac{1}{200}\right)=3\left(\frac{1}{3}-\frac{1}{200}\right)=3\cdot\frac{197}{600}=\frac{197}{200}\)

sửa 199 -> 200

P/S : Lần sau đừng có đăng từng câu từng câu hỏi trên đây nhá

23 tháng 9 2020

                                                       Bài giải

a, \(A=\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{647\cdot650}\)

\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{647}-\frac{1}{650}\)

\(A=\frac{1}{5}-\frac{1}{650}=\frac{13}{650}-\frac{1}{650}=\frac{12}{650}=\frac{6}{325}\)

b, \(B=\frac{12}{3\cdot7}+\frac{12}{7\cdot11}+...+\frac{12}{196\cdot200}\)

\(B=3\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{196\cdot200}\right)\)

\(B=3\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{196}-\frac{1}{200}\right)\)

\(B=3\left(\frac{1}{3}-\frac{1}{200}\right)=3\cdot\frac{197}{600}=\frac{197}{200}\)

20 tháng 7 2016

\(a,A=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+...+\frac{3}{90}\)

\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)

\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=3.\left(1-\frac{1}{10}\right)\)

\(A=3.\frac{9}{10}=\frac{27}{10}\)

\(b,B=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+\frac{2}{14.17}\)

\(B.\frac{3}{2}=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)

\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{17}\)

\(B=\frac{15}{34}:\frac{3}{2}=\frac{5}{17}\)

20 tháng 7 2016

a) Lấy A chia 3

b) Lấy B nhân 3/2

13 tháng 3 2019

\(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{\left(4x+3\right)\left(4x+7\right)}=\frac{5}{12}\)(x phải khác \(-\frac{3}{4};-\frac{7}{4}\)nhé)

\(\Leftrightarrow\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4x+3\right)\left(4x+7\right)}=4.\frac{5}{12}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4x+3}-\frac{1}{4x+7}=\frac{5}{3}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{4x+7}=\frac{5}{3}\)

\(\Leftrightarrow\frac{4x+7-3}{3\left(4x+7\right)}=\frac{5\left(4x+7\right)}{3\left(4x+7\right)}\)

\(\Rightarrow4x+7-3=20x+35\)(chỗ này dùng dấu suy ra nhé)

\(\Leftrightarrow4x-20x=35-7+3\)

\(\Leftrightarrow-16x=31\)

\(\Leftrightarrow x=-\frac{31}{16}\)

V...

2 tháng 8 2017

\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)

\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)

\(B=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)

Vậy giá trị của biểu thức \(B=\frac{32}{99}\)

2 tháng 8 2017

Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.....+\frac{4}{95.99}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{95}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{32}{99}\)

=1/5-1/x(x+3)

=x=98

25 tháng 9 2016

<=> \(\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

<=>\(\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}\cdot3=\frac{303}{1540}\)

<=>\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)

<=>\(x+3=308\)

<=>\(x=305\)

19 tháng 8 2016

\(A=\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{95.99}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{32}{99}\)

23 tháng 2 2020

\(B=1\frac{6}{41}.\left(\frac{12+\frac{12}{19}+\frac{12}{37}-\frac{12}{53}}{3+\frac{3}{19}+\frac{3}{37}-\frac{3}{53}}\right):\left(\frac{4+\frac{4}{19}+\frac{4}{37}-\frac{4}{53}}{5+\frac{5}{19}+\frac{5}{37}-\frac{5}{53}}\right).\frac{124242423}{237373735}\)

\(B=1\frac{6}{41}.\left[\frac{12\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{3\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}\right]:\left[\frac{4\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{5\left(\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}\right].\frac{124242423}{237373735}\)

\(B=1\frac{6}{41}\left(\frac{12}{3}.\frac{5}{4}\right).\frac{124242423}{237373735}\)

\(B=1\frac{6}{41}.5.\frac{123}{235}\)

\(B=\frac{47.5.123}{41.235}=\frac{47.5.41.3}{41.5.47}=3\)

B=\(1\frac{6}{41}.\left(\frac{12+\frac{12}{19}+\frac{12}{37}-\frac{12}{53}}{3+\frac{3}{19}+\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{19}+\frac{4}{37}-\frac{4}{53}}{5+\frac{5}{19}+\frac{5}{37}-\frac{5}{53}}\right).\frac{124242423}{237373735}\)

B=\(\frac{47}{41}.\left(\frac{12.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{3.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}:\frac{4.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}{5.\left(1+\frac{1}{19}+\frac{1}{37}-\frac{1}{53}\right)}\right).\frac{123.1010101}{235.1010101}\)

B=\(\frac{47}{41}.\left(\frac{12}{3}:\frac{4}{5}\right).\frac{123}{235}=\frac{47}{41}.\left(\frac{12}{3}.\frac{5}{4}\right).\frac{123}{235}\)

B=\(\frac{47}{41}.\frac{15}{3}.\frac{123}{235}=\frac{47.5.3.41.3}{41.3.5.47}=3\)

Vậy B=3

Chúc bn học tốt

3 tháng 7 2019

a, \(A=\frac{12}{3.7}+\frac{12}{7.11}+...+\frac{12}{195.199}\)

       \(=3.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{195.199}\right)\)

       \(=3.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{195}-\frac{1}{199}\right)\) 

       \(=3.\left(\frac{1}{3}-\frac{1}{199}\right)\)

       \(=3.\left(\frac{199}{597}-\frac{3}{597}\right)\)

       \(=3.\frac{196}{597}\)

       \(=\frac{196}{199}\)