thực hiện phép tính \(\frac{4^32^5.9^7}{2^5.27^2}\)
MỌI NGƯỜI ƠI MÌNH CẦN GẤP LẮM MONG MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik nghỉ là k có 2 axit nào kết hợp vs nhau để ra 2 oxit đâu bạn
\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)
Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)
\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)
Vậy \(x=2\)
\(2,ĐK:x\ge-1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)
\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)
Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)
Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)
Vậy ...
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^4.2^{10}+12^{10}}=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^42^{10}+\left(2^2.3\right)^{10}}=\frac{2^{19}.3^9+2^{18}.3^9.5}{2^{14}.3^4+2^{20}.3^{10}}\)
\(=\frac{2^{14}.3^4\left(2^5.3^5+2^4.3^5.5\right)}{2^{14}.3^4\left(1+2^6.3^6\right)}=\frac{2^5.3^5+2^4.3^5.5}{1+2^6.3^6}=\frac{27216}{46657}\)
Có lẽ bạn gõ nhầm đề một chút. Mình sẽ làm theo đề sửa lại.
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^92^{10}+\left(2^2.3\right)^{10}}=\frac{2^{19}.3^9+2^{18}.3^9.5}{2^{19}.3^9+2^{20}.3^{10}}\)
\(=\frac{2^{18}.3^9\left(2+5\right)}{2^{18}.3^9\left(2+2^2.3\right)}=\frac{7}{14}=\frac{1}{2}\).
Bài 2:
\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)
\(=25x^2+10x+1-\left(2xy-3\right)^2\)
\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)
\(=25x^2+10x+1-4x^2y^2+12xy-9\)
\(=25x^2-4x^2y^2+10x+12xy-8\)
Bài 2:
\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)
\(=x^3-1=x^3-9x^2+2x+6\)
\(=x^3-9x^2+2x+6=x^3-1\)
\(=x^3-9x^2+2x+6+1=x^3-1+1\)
\(=x^3-9x^2+2x+7=x^3\)
\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)
\(=-9x^2+2x+7=0\)
\(\Rightarrow x=-\frac{7}{9};x=1\)
Ta có : |x - 2| ; |x - 5| ; |x - 18| ≥0∀x∈R≥0∀x∈R
=> |x - 2| + |x - 5| + |x - 18| ≥0∀x∈R≥0∀x∈R
=> D có giá trị nhỏ nhất khi x = 2;5;18
Mà x ko thể đồng thời nhận 3 giá trị
Nên GTNN của D là : 16 khi x = 5 ok nha bạn
x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4
Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)
Vậy GTNN của x^2/x-1 = 4 <=> x= 2
k mk nha
\(\frac{4^3.2^5.9^7}{2^5.27^2}=\frac{\left(2^2\right)^3.2^5.\left(3^2\right)^7}{2^5.\left(3^3\right)^2}=\frac{2^{11}.3^{14}}{2^5.3^6}=2^6.3^8\)
Bài làm :
\(\frac{4^3.2^5.9^7}{2^5.27^2}\)
\(=\frac{\left(2^2\right)^3.2^5.\left(3^2\right)^7}{2^5.\left(3^3\right)^2}\)
\(=\frac{2^6.3^{14}}{3^6}\)
\(=2^6.3^8\)
Học tốt