K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

Đặt \(D=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow D^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(\Leftrightarrow D^2=8+2\sqrt{16-10-2\sqrt{5}}\)

\(\Leftrightarrow D^2=8+2\sqrt{6-2\sqrt{5}}\)

\(\Leftrightarrow D^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(\Leftrightarrow D^2=8+2\left(\sqrt{5}-1\right)\)

\(\Leftrightarrow D^2=6+2\sqrt{5}\)

\(\Leftrightarrow D^2=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow D=\sqrt{5}+1\)

Thay vào ta tính được: \(A=\sqrt{5}+1-\sqrt{5}=1\)

Vậy A = 1

a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

b: Ta có: P=A:B

\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

25 tháng 11 2016

 kho wa do

Bài 1: 

Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)

Số giá trị nguyên thỏa mãn điều kiện là:

\(\left(2+4\right)+1=7\)

 

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Lời giải:
Gọi biểu thức là A

\(A=\left[3-\frac{\sqrt{5}(\sqrt{5}-1)}{1-\sqrt{5}}\right]\left[\frac{\sqrt{5}(\sqrt{2}+\sqrt{3})}{\sqrt{2}+\sqrt{3}}-3\right]\)

\(=[3-\frac{-\sqrt{5}(1-\sqrt{5})}{1-\sqrt{5}}](\sqrt{5}-3)=(3--\sqrt{5})(\sqrt{5}-3)=(3+\sqrt{5})(\sqrt{5}-3)=5-3^2=-4\)