K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

\(P=\dfrac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{\left(\sqrt{a}+4\right)\left(\sqrt{a}-4\right)}:\dfrac{\sqrt{a}+4-2\sqrt{a}-5}{\left(\sqrt{a}+4\right)}\)

\(=\dfrac{-8\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+4\right)\left(\sqrt{a}-4\right)}\cdot\dfrac{\sqrt{a}+4}{-\left(\sqrt{a}+1\right)}=\dfrac{8}{\sqrt{a}-4}\)

b: \(=\left(12\sqrt[3]{2}+2\sqrt[3]{2}-2\sqrt[3]{2}\right)\cdot\left(5\sqrt[3]{4}-3\sqrt[3]{\dfrac{1}{2}}\right)\)

\(=12\sqrt[3]{2}\cdot5\sqrt[3]{4}-12\sqrt[3]{2}\cdot3\sqrt[3]{\dfrac{1}{2}}\)

\(=12\cdot5\cdot2-12\cdot3=120-36=84\)