Cho a là số nguyên . Chứng minh rằng
M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1 là bình phương của một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)
\(=\left(a+1\right)\left(a+4\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)
\(=\left(a^2+5a+4\right)^2+2\left(a^2+5a+4\right)+1\)
\(=\left(a^2+5a+5\right)^2\) là bình phương của 1 số nguyên (đpcm)
M=(x+1)(x+4)(x+2)(x+3)+1
=(x2+5x+4)(x2+5x+6)+1
dat x2+5x+5=a ta co
M=(a+1)(a-1)+1
=a2-1+1
=a2
thay a boi x2+5x+5 ta co M=(x2+5x+5)2 (1)
ma x la so nguyen nen x2+5x+5 la so nguyen (2)
tu (1) va (2) thi M la binh phuong cua 1 so nguyen
1. \(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)
\(=\left[\left(a+1\right)\left(a+4\right)\right]\left[\left(a+2\right)\left(a+3\right)\right]+1\)
\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)
\(=\left(a^2+5a+4\right)^2+2\left(a^2+5a+4\right)+1\)
\(=\left(a^2+5a+5\right)^2\)
=> Đpcm
M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1
= [ ( a + 1 )( a + 4 ) ][ ( a + 2 )( a + 3 ) ] + 1
= [ a2 + 5a + 4 ][ a2 + 5a + 6 ] + 1
Đặt t = a2 + 5a + 4
M <=> t[ t + 2 ] + 1
= t2 + 2t + 1
= ( t + 1 )2
= ( a2 + 5a + 4 + 1 )2 = ( a2 + 5a + 5 )2 ( đpcm )
( x2 + x + 1 )( x2 + x + 2 ) - 12 (*)
Đặt t = x2 + x + 1
(*) <=> t( t + 1 ) - 12
= t2 + t - 12
= t2 - 3t + 4t - 12
= t( t - 3 ) + 4( t - 3 )
= ( t - 3 )( t + 4 )
= ( x2 + x + 1 - 3 )( x2 + x + 1 + 4 )
= ( x2 + x - 2 )( x2 + x + 5 )
= ( x2 + 2x - x - 2 )( x2 + x + 5 )
= [ x( x + 2 ) - 1( x + 2 ) ]( x2 + x + 5 )
= ( x + 2 )( x - 1 )( x2 + x + 5 )
tranvantoancv.violet.vn/present/showprint/entry_id/11064865
A=x^4+6x^3+7x^3-6x+1=x^4+6(x^3-2x^2)+(9x^2-6x+1)=x^4+2x^2(3x-1)+(3x-1)^2=(x^2+3x-1)^2
M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1
= [ ( a + 1 )( a + 4 ) ][ ( a + 2 )( a + 3 ) ] + 1
= ( a2 + 5a + 4 )( a2 + 5a + 6 ) + 1
Đặt t = a2 + 5a + 4
M = t( t + 2 ) + 1
= t2 + 2t + 1
= ( t + 1 )2
= ( a2 + 5a + 4 + 1 )2
= ( a2 + 5a + 5 )2
Vì a nguyên => a2 + 5a + 5 nguyên
Vậy M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1 là bình phương của một số nguyên ( đpcm )