Cho P = \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a. Tìm điều kiện xác định
b. Rút gọn
c. Tìm Pmax
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(M=\frac{2}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\) là ước của 2.
\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1,\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{1,2,3,4,5\right\}\)
\(\Leftrightarrow x\in\left\{1,4,16,25\right\}\)
Đối chiếu điều kiện ta có:
\(x\in\left\{1,16,25\right\}\)
Để M là số nguyên thì \(\frac{2}{\sqrt{x}-3}\in Z\) Suy ra \(\frac{2}{\sqrt{x}-3}=k\left(k\in N\right)\)
\(\Rightarrow\sqrt{x}-3=\frac{2}{k}\Leftrightarrow\sqrt{x}=\frac{2}{k}+3.\)\(\Rightarrow x=\left(\frac{2}{k}+3\right)^2\left(k\ne0\right).\)
Mà \(\sqrt{x}\ge0\Rightarrow\frac{2}{k}+3\ge0\Leftrightarrow\frac{2+3k}{k}\ge0\Leftrightarrow\hept{\begin{cases}k>0\\k\le-\frac{2}{3}\end{cases}\Leftrightarrow k\ne0\left(do-k\in Z\right).}\)
Lại theo ĐKXĐ ta có \(\hept{\begin{cases}\sqrt{x}\ne2\\\sqrt{x}\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}-3}\ne-2\\\frac{2}{\sqrt{x}-3}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}k\ne-2\\k\ne0\end{cases}.}}\)
Kết hợp lại ta có \(k\in Z,k\ne-2,k\ne0\)
Vậy để M là số nguyên thì \(x=\left(\frac{2}{k}+3\right)^2\)với \(k\in Z,k\ne-2,k\ne0.\)
Có sai chỗ nào mong mọi người chỉ cho .Cảm ơn nhiều
P/S: Hầu hết các câu trả lời đều là tìm x nguyên , nhưng đề bài là tìm x thôi ạ!
bạn đặt \(\sqrt{x}=a\) , a> 0
Thay \(\sqrt{x}=a\) vô biểu thức => rút gọn ra => thay trở lại
`a)ĐKXĐ:{(x > 0),(x \ne 4):}`
`b)` Với `x > 0,x \ne 4` có:
`A=[\sqrt{x}(\sqrt{x}+2)+\sqrt{x}(\sqrt{x}-2)]/[x-4].[x-4]/[\sqrt{4x}]`
`A=[x-2\sqrt{x}+x-2\sqrt{x}]/[2\sqrt{x}]`
`A=[2\sqrt{x}(\sqrt{x}-2)]/[2\sqrt{x}]=\sqrt{x}-2`
`c)` Với `x > 0,x \ne 4` có:
`A < 3 <=>\sqrt{x}-2 < 3<=>\sqrt{x} < 5<=>x < 25`
Kết hợp đk
`=>0 < x < 25 ,x \ne 4`
Đặt \(\sqrt{x}=a\) , a \(\ge0\)
a , Khi đó biểu thức trở thành :
Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)
Đến đây làm như lớp 8 thôi
a. ĐKXĐ : \(\orbr{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\end{cases}}\)<=> \(\orbr{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b. \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
là bằng 2 phần 3 phải ko