K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 9 2020

c/

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x=1-cos4x\)

\(\Leftrightarrow cos6x+cos2x-2cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x-2cos4x=0\)

\(\Leftrightarrow2cos4x\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
20 tháng 9 2020

a/

\(\Leftrightarrow1+cos2x+cos3x+cosx=0\)

\(\Leftrightarrow2cos^2x+2cos2x.cosx=0\)

\(\Leftrightarrow2cosx\left(cosx+cos2x\right)=0\)

\(\Leftrightarrow2cosx\left(2cos^2x+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

b/

\(\Leftrightarrow2sin3x.cosx+sin3x=2cos3x.cosx+cos3x\)

\(\Leftrightarrow sin3x\left(2cosx+1\right)-cos3x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left(sin3x-cos3x\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(3x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
22 tháng 11 2019

\(cosx+cos3x+cos2x+cos4x=0\)

\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)

\(\Leftrightarrow cosx.\left(cos2x+cos3x\right)=0\)

\(\Leftrightarrow cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{5x}{2}=0\\cos\frac{x}{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=\pi+k2\pi\end{matrix}\right.\)

NV
22 tháng 11 2019

\(sinx+sin7x+sin3x+sin5x=0\)

\(\Leftrightarrow2sin4x.cos3x+2sin4x.cosx=0\)

\(\Leftrightarrow sin4x\left(cos3x+cosx\right)=0\)

\(\Leftrightarrow sin4x.cos2x.cosx=0\)

\(\Leftrightarrow sin4x=0\)

\(\Rightarrow4x=k\pi\Rightarrow x=\frac{k\pi}{4}\)

Lý do chỉ cần 1 pt sin4x=0 do sin4x bao hàm cả cosx và cos2x ở trong đó

26 tháng 2 2018

Chọn D

Ta sẽ biến đổi phương trình thành dạng tích

Chú ý: có thể dùng 4 đáp án thay vào phương trình để kiểm tra đâu là nghiệm

NV
25 tháng 4 2019

\(\frac{sinx+sin5x+sin3x}{cosx+cos5x+cos3x}=\frac{2sin3x.cos2x+sin3x}{2cos3x.cos2x+cos3x}=\frac{sin3x\left(2cos2x+1\right)}{cos3x\left(2cos2x+1\right)}=\frac{sin3x}{cos3x}=tan3x\)

NV
1 tháng 8 2021

ĐKXĐ: ...

\(sin3x-cos3x+sinx+cosx=\dfrac{sin3x-cos3x+sinx+cosx}{\left(sin3x+cosx\right)\left(cos3x-sinx\right)}\)

\(\Rightarrow\left[{}\begin{matrix}sin3x-cos3x+sinx+cosx=0\left(1\right)\\\left(sin3x+cosx\right)\left(cos3x-sinx\right)=1\left(2\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow3sinx-4sin^3x-4cos^3x+3cosx+sinx+cosx=0\)

\(\Leftrightarrow sinx+cosx+sin^3x+cos^3x=0\)

\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2-sinx.cosx\right)=0\)

\(\Leftrightarrow sinx+cosx=0\) (loại)

(2) \(\Leftrightarrow sin3x.cos3x-sinx.cosx-sin3x.sinx+cos3x.cosx=1\)

\(\Leftrightarrow\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x+cos4x=1\)

\(\Leftrightarrow\dfrac{1}{2}\left(3sin2x-4sin^32x\right)-\dfrac{1}{2}sin2x+1-2sin^22x=1\)

\(\Leftrightarrow sin2x-2sin^32x-2sin^22x=0\)

\(\Leftrightarrow-sin2x\left(2sin^22x+2sin2x-1\right)=0\)

\(\Leftrightarrow...\)

b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)

c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)

\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)

1 tháng 6 2021

1.

\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)

1 tháng 6 2021

2.

\(sinx-\sqrt{3}cosx=2sin5\text{​​}x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)

NV
31 tháng 7 2020

c/

\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{\sqrt{2}}\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{7\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)

d/

\(\Leftrightarrow2sinx.cosx+1-2sin^2x=1\)

\(\Leftrightarrow2sinx\left(cosx-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)

NV
31 tháng 7 2020

a/

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin5x-\frac{1}{2}cos5x=-1\)

\(\Leftrightarrow sin\left(5x-\frac{\pi}{6}\right)=-1\)

\(\Leftrightarrow5x-\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{15}+\frac{k2\pi}{5}\)

b/

\(\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)