Cho tam giác ABC nhọn. Các đường cao AD và BE cắt nhau tại H.
Gọi M là trung điểm của BC. Điểm P đối xứng với điểm H qua đường thẳng BC.
Điểm Q đối xứng với điểm H qua điểm M.
a) Chứng minh PQ // BC. Khi đó, tứ giác DMQP là hình gì? Vì sao?
b) Chứng minh tứ giác HCQB là hình bình hành. Tính số đo các góc ACQ; ABQ
c) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng điểm O cách đều 5 điểm A, B, P, Q, C.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: H và P đối xứng nhau qua BC
nên BC là đường trung trực của HP
Suy ra: D là trung điểm của HP
Xét ΔHPQ có
D là trung điểm của HP
M là trung điểm của HQ
Do đó: DM là đường trung bình của ΔHPQ
Suy ra: DM//PQ
hay PQ//BC
Xét tứ giác DMQP có DM//PQ
nên DMQP là hình thang
mà \(\widehat{PDM}=90^0\)
nên DMQP là hình thang vuông
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
Kẻ CG//MN(G thuộc AB), CG cắt AD tại K
=>HI vuông góc CK
=>I là trựctâm của ΔHCK
=>KI vuông góc CH
=>KI//AB
=>KI//BG
=>K là trung điểm của CG
MN//GC
=>MH/GK=HN/KC
mà GK=KC
nên MH=HN
a: Ta có: H và P đối xứng nhau qua BC
nên HP⊥BC tại D
và D là trung điểm của HP
Xét ΔHPQ có
D là trung điểm của HP
M là trung điểm của HQ
Do đó: DM là đường trung bình của ΔHPQ
Suy ra: PQ//BC