Câu 1
a, Cho 7 điểm trong đó không có 3 điểm nào thẳng hàng . Qua 2 điểm vẽ được 1 đường thẳng , hỏi có bao nhiêu đường thẳng từ 7 điểm đã cho.
b, Cho 100 điểm trong đó chỉ có 40 điểm thẳng hàng . Hỏi có bao nhiêu đường thẳng ( như phần a )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Công thức tính số đường thẳng : \(\frac{n.\left(n-1\right)}{2}\) (n là số điểm)
Nếu không có 3 điểm thẳng hàng thì số đường thẳng kẻ được là :
\(\frac{2017.\left(2017-1\right)}{2}=2033136\)(đường thẳng)
Nếu là 7 điểm không thẳng hàng kẻ được số đường thẳng là :\(\frac{7.\left(7-1\right)}{2}=21\)(đường thẳng). Còn nếu là 7 điểm thẳng hàng thì chỉ kẻ được duy nhất 1 đường thẳng.
Số đường thẳng chênh lệch là :
21 - 1 = 20 (đường thẳng)
Số đường thẳng kẻ được từ 2017 điểm trong đó có 7 điểm thẳng hàng là :
2033136 - 20 = 2033116 (đường thẳng)
Đáp số : ..........................
b) Ta có : \(\frac{n.\left(n-1\right)}{2}=153\)
\(\Rightarrow n.\left(n-1\right)=153.2\)
\(n.\left(n-1\right)=306\)
\(n.\left(n-1\right)=2.3^2.17\)
\(n.\left(n-1\right)=18.17\)
\(\Rightarrow n=18\)
Nếu trong 20 điểm không có 3 điểm nào thẳng hàng thì vẽ được \(\frac{20.\left(20-1\right)}{2}=190\)(đường thẳng)
Trong 7 điểm không có 3 điểm nào thẳng hàng thì tạo thành \(\frac{7.\left(7-1\right)}{2}=21\)(đường thẳng)
Vì 7 điểm thẳng hàng tạo thành 1 đường thẳng nên số đường thẳng giảm \(21-1=20\)(đường thẳng)
Vậy có \(190-20=170\)(đường thẳng)
#z
a,Cứ 1 điểm tạo với 9 điểm còn lại 9 đường thẳng
Với 10 điểm ta có : 9. 10 = 90 đường thẳng
Theo cách tính trên mỗi đường thẳng được tính hai lần
Số đường thẳng được tạo là : 90 : 2 = 45 ( đường thẳng)
b, Cứ 1 điểm tại với n - 1 điểm còn lại số đường thẳng là:
n - 1 đường thẳng
Với n điểm ta có (n-1).n đường thẳng
Theo cách tính trên mỗi đường thẳng được tính hai lần
Vậy với n điểm trong đó không có 3 điểm nào thẳng hàng thì sẽ tạo được số đường thẳng là: (n-1).n:2
Theo bài ra ta có: (n-1).n : 2 = 28
(n-1).n = 56
(n-1).n = 7 x 8
n = 8
Kết luận n = 8 thỏa mãn yêu cầu đề bài
help me ! Plese with this exercise as it is quite difficult
please