Cho tứ giác ABCD, biết hai đường thẳng AD và BC cắt nhau ở E, hai đường thẳng AB và CD cắt nhau tại F. Các tia phân giác của góc E và góc F cắt nhau ở I. Tính góc EIF theo góc A và góc C của tứ giác ABCD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
B1
1 tháng 8 2017
Bài nay có trong TOÁN NÂNG CAO & CÁC CHUYÊN ĐỀ HÌNH HỌC 8 của Vũ Dương Thuỵ . Các trong sách cũg hay nhưng mình còn 1 cách khác nhanh hơn và dể hiểu hơn nhìu so với cách trong sách.
Giải
⊕⊕ Ta có:
Iˆ1I^1 == 360∘360∘ −− Iˆ2I^2
== 360∘360∘-(360∘360∘ −− AˆA^ −− Fˆ1F^1 −− Eˆ1E^1)
== AˆA^ ++ Fˆ1F^1 ++ Eˆ1E^1
== AˆA^ ++ Fˆ2F^2 ++ Eˆ2E^2
== AˆA^ +180∘−Aˆ−Dˆ22180∘−A^−D^22 ++ 180∘−Aˆ−Bˆ22
chắc sai
Gọi giao điểm của FI với BC là M . Góc EMF là góc ngoài đỉnh F của hai tam giác MBF và MIE , ta có :
\(\widehat{EMF}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)
\(\widehat{EMF}\)\(=\widehat{F_2}\)\(+\widehat{EIF}\)
Suy ra : \(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)\(\left(1\right)\)
Gọi giao điểm của EI với CD là N
Chứng minh tương tự , ta có :
\(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{NDF}\)\(+\widehat{E_1}\)\(\left(2\right)\)\(...\)
Xin lỗi , mình chỉ biết giải đến đấy