Tìm x để
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$
$\Leftrightarrow (x+2)(x+3)\leq 0$
$\Leftrightarrow -3\leq x\leq -2$
2. ĐKXĐ: $x\geq 1$
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)
\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)
Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$
$\Leftrightarrow 1-\sqrt{x-1}\geq 0$
$\Leftrightarrow 0\leq x\leq 2$
a: Ta có: \(\sqrt{1-x^2}=x-1\)
\(\Leftrightarrow1-x^2=x-1\)
\(\Leftrightarrow1-x^2-x+1=0\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2+4x+4}=x-2\)
\(\Leftrightarrow\left|x+2\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(x\ge-2\right)\\x+2=2-x\left(x< -2\right)\end{matrix}\right.\Leftrightarrow2x=0\)
hay x=0(loại)
Từ đề bài ta dễ dàng có được \(4x-1>0\Leftrightarrow x>\frac{1}{4}\)
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
\(\Leftrightarrow\left(4x-1\right)\left(\sqrt{x^2+1}-1\right)=2x^2+2x+1-4x+1\)
\(\Leftrightarrow2x^2-2x-\left(4x-1\right)\cdot\frac{x^2}{\sqrt{x^2+1}+1}=0\)
\(\Leftrightarrow x\left[2x-2-\frac{x\left(4x-1\right)}{\sqrt{x^2+1}+1}\right]=0\)
\(\Leftrightarrow x\left[\frac{\left(2x-2\right)\left(\sqrt{x^2+1}+1\right)-x\left(4x-1\right)}{\sqrt{x^2+1}+1}\right]=0\)
Dễ thấy phương trình sau vô nghiệm nên x=0
phương trình này có nghiệm bằng 4/3 . Mong bạn làm giúp mình vs . Đừng nhân vào ra bậc 4 nhá